

Cours d'eau de tête de bassin versant aux Herbiers (source : EPTB Sèvre Nantaise)

Étude HMUC : Rapport Phase 4 Quantification des volumes prélevables et programme d'actions

Rapport validé par la Commission Locale de l'Eau du SAGE de la Sèvre Nantaise le 16 juillet 2024

Mise à jour du 25 février 2025

Avertissement

Ce rapport a été élaboré avec l'objectif d'éclairer la Commission Locale de l'Eau du SAGE du bassin de la Sèvre Nantaise en matière de gestion quantitative de la ressource en eau. Les méthodologies, scénarios et valeurs de ce rapport ne revêtent aucune portée réglementaire et n'emportent aucun choix définitif.

Nom du document	Étude HMUC : Rapport Phase 4. Quantification des volumes prélevables
	et programmes d'actions

Version du rapport	Apport	Rédacteur.rice / Relecteur.rice	Institut	Date
1.0	Méthode de calcul des VP	Guillaume Thirel	INRAE	06/09/2023
1.1	Prise en compte des retours de l'EPTB et de l'AELB	Guillaume Thirel,	INRAE	22/09/2023
1.1	Méthode de calcul du DOE, DSA, DSAR et DCR	Léonard Santos	INIVAL	22/09/2023
1.2	Prise en compte retours AELB et EPTB SN	Guillaume Thirel	INRAE	25/09/2023
1.3	Modifications suite à discussions avec AELB et EPTB SN	Guillaume Thirel	INRAE	09/10/2023
1.4	Calculs des VP	Léonard Santos	INRAE	21/11/2023
1.5	Recalcul des DOE, VP, VPM, rejets de Bultière et reparamétrisation de l'UG Moine 1	Léonard Santos	INRAE	05/12/2023
1.6.2	Compléments méthodologiques et mise en forme + ajout des résultats provisoires sur gestion de crise	Léonard Santos Guillaume Thirel A. THOMAS	INRAE et EPTB	18/01/2024
1.7	Prise en compte des retours du COTECH 10	Guillaume Thirel et Anthony Thomas	INRAE et EPTB	20/03/2024
1.8	Prise en compte des retours du bureau de CLE et de la CLE	Guillaume Thirel et Anthony Thomas	INRAE et EPTB	28/05/2024
1.9	Contrôle, corrections et mise en forme	Guillaume Thirel et Anthony Thomas	INRAE et EPTB	05/06/2024
1.10	Prise en compte des retours du COTECH du 18/06/2024	Guillaume Thirel et Anthony Thomas	INRAE et EPTB	21/06/2024
1.11	Contrôle, corrections et mise en forme	Guillaume Thirel et Anthony Thomas	INRAE et EPTB	04/07/2024
1.12	Corrections suite contrôle livrables	Guillaume Thirel et Anthony Thomas	INRAE et EPTB	05/12/24

Comment citer ce rapport :

Santos, L., Thomas, A., Mounereau, L. et Thirel, G. Étude HMUC : Rapport Phase 4. Quantification des volumes prélevables et programme d'actions. 123 p. Lien : https://hal.inrae.fr/hal-04650908.

Table des matières

1 Introduction	5
1.1 Présentation générale du bassin versant	5
1.2 Contexte général de l'étude HMUC	6
1.2.1 Origine de l'étude	
1.2.2 Objet de l'étude	
1.2.3 Découpage de la mission	
1.3 Étude « Volumes Prélevables » de 2012	8
1.4 Objectifs de la phase 4	
2 Méthodologie de calcul des volumes prélevables et débits réglementaires théoriques	10
2.1 Définitions et recommandations	
2.2 Éléments généraux de méthodologie	13
2.3 Méthodologie de détermination des débits objectifs d'étiage	17
2.3.1 Calcul du débit d'étiage désinfluencé	17
2.3.2 Calcul du débit environnemental	18
2.3.3 Propositions de valeurs théoriques du DOE	19
2.4 Méthodologie de calcul des volumes prélevables théoriques en période de basses eaux	
2.4.1 Détermination des volumes potentiellement prélevables en période de basses eaux	
2.4.1.1 Détermination des VPM théoriques	22
2.4.1.2 Possibilité de répartition des VPM dans un esprit de solidarité amont-aval	23
2.4.2 Détermination des volumes prélevables théoriques en période de basses eaux	24
2.4.2.1 Retrait des volumes prélevés non réglementés des VPM	24
2.4.2.2 Prise en compte des rejets	24
2.4.2.3 Formule de calcul des VP en période d'étiage	24
2.4.3 Cas particulier : prise en compte des retenues de Ribou-Verdon et Bultière et	
ajustements spécifiques	25
2.4.3.1 Bilans annuels	25
2.4.3.2 Bilans mensuels	28
2.5 Méthodologie de calcul des volumes potentiellement disponibles théoriques en période de	e
hautes eaux (Recommandations du SDAGE Loire Bretagne)	30
2.6 Synthèse des hypothèses proposées pour les scénarios A (favorable aux milieux) et B	
(favorable aux usages)	33
2.7 Prise en compte du changement climatique	
2.8 Méthodologie de calcul des DSA, DSAR et DCR	44
2.8.1 Méthodologie n°1	
2.8.2 Méthodologie n°2	44
3 Proposition de gammes de valeurs théoriques de DOE et de VP pour la période de basses eaux	45
3.1 Valeurs de DOE calculées	45
3.2 Quantification des pertes / gains d'habitats	48
3.3 Comparaison des DOE avec les débits d'étiage influencés	
3.4 Possibilités de mise en place de solidarité amont aval	59
3.5 Valeurs de VPM calculées	60
3.6 Influence du « soutien d'étiage » de Bultière sur les volumes prélevables théoriques de l'	UG
Maine	
3.7 Valeurs de volumes prélevables (VP) théoriques calculées	62

4 Proposition de gammes de valeurs de volumes potentiellement disponibles théoriques po	ur la
période de hautes eaux	73
4.1 Éléments de cadrage	73
4.2 Résultats obtenus	75
4.3 Analyse fréquentielle	82
5 Répartition temporelle des volumes prélevables	89
6 Comparaison des volumes prélevables avec l'étude de 2012	92
7 Proposition de gammes de valeurs de DCR, DSAR et DSA	96
7.1 Analyse de la cohérence entre DOE et débits de gestion de crise	96
7.2 Résultats de la méthodologie n°1	
7.3 Résultats de la méthodologie n°2	
8 Programme d'actions	102
8.1 Synthèse du programme d'actions	102
8.2 Compléments de connaissances	107
8.2.1 Mesures de débits	107
8.2.2 Données sur les prélèvements et rejets	107
8.2.3 Compléments d'information sur les plans d'eau	108
8.2.4 Compléments sur les milieux	108
8.2.5 Données météorologiques	108
8.2.6 Sensibilisation et vulgarisation	108
8.2.7 Prise en compte des avancées de la connaissance scientifique	109
9 Conclusions	110
10 Références	111
11 Annexes	112
11.1 Calculs initiaux proposés avant le COTECH 10 du 13/02/2024	112
11.2 Valeurs obtenues avec les calculs initiaux proposés avant le COTECH 10 du 13/02	/2024 113
11.3 Évaluation des pertes / gains d'habitats au droit des stations de débits biologiques	pour la
période de juin à septembre	117
11.3.1 Comparaison au débit biologique seuil haut	117
11.3.2 Comparaison au débit biologique moyen	
12 Acronymes utilisés	123

1 Introduction

1.1 Présentation générale du bassin versant

La Sèvre Nantaise est le dernier grand affluent de la Loire. A ce titre, son bassin versant fait partie du district hydrographique Loire-Bretagne. Les sources de la Sèvre Nantaise, localisées sur les communes du Beugnon et de Neuvy-Bouin, se situent à 215 m d'altitude. Son territoire d'environ 2 350 km² couvre 113 communes, réparties sur quatre départements – les Deux-Sèvres, le Maine-et-Loire, la Vendée et la Loire-Atlantique – et deux régions administratives – les Pays de la Loire et la Nouvelle-Aquitaine (pour le département des Deux-Sèvres).

Le cours de la Sèvre Nantaise s'étend sur 136 kilomètres. Elle a pour affluents principaux les Maines (Petite et Grande) en rive gauche et l'Ouin, la Moine et la Sanguèze d'amont en aval en rive droite (Figure 1). La Sèvre Nantaise, les affluents principaux et les réseaux secondaires, portent à près de 4000 km le linéaire de rivières et de ruisseaux du bassin versant de la Sèvre Nantaise.

Les agglomérations principales du bassin versant sont Nantes, Cholet, Vertou, Les Herbiers, Vallet, Mauléon, Clisson, Mortagne-sur-Sèvre, Pouzauges, Montaigu-Vendée, Les Essarts-en-Bocage, Cerizay, Saint-Fulgent, Moncoutant-sur-Sèvre, Aigrefeuille-sur-Maine et Sèvremoine. Au total, environ 330 000 habitants vivent sur le bassin.

Le climat observé sur le bassin de la Sèvre Nantaise est de type tempéré océanique. Les hivers sont doux et pluvieux et les étés relativement beaux et doux également. Le régime hydrologique de la Sèvre Nantaise est de type pluvial, c'est-à-dire avec des hivers présentant des débits plus forts et des étés présentant des débits plus faibles, sous l'influence de l'évaporation. La géologie du bassin est principalement cristalline, ce qui fait que l'hydrogéologie du bassin est marquée par un milieu fissuré et semi-perméable. Des indications chiffrées sur le climat, le régime hydrologique et hydrogéologique du bassin ont été présentées dans le rapport de phase 1, en même temps que les bases de données hydroclimatiques. Une présentation détaillée du bassin versant est aussi donnée dans le rapport de Phase 2 (Santos et al., 2023).

À retenir:

Le bassin versant de la Sèvre Nantaise a une surface de 2 350 km². Il couvre 113 communes pour environ 330 000 habitants. Le réseau hydrographique est dense (environ 4 000 km) et le climat est de type océanique.

1.2 Contexte général de l'étude HMUC

La présente étude vise à améliorer la compréhension de l'hydrologie quantitative sur le bassin versant de la Sèvre Nantaise (c'est-à-dire l'espace géographique drainé par cette dernière). Cette étude, sous maîtrise d'ouvrage de l'EPTB de la Sèvre Nantaise, est notamment financée par l'Agence de l'Eau Loire-Bretagne et la Région Pays de la Loire dans le cadre du Contrat Territorial Eau 2021 – 2026 du bassin versant de la Sèvre Nantaise.

Le Comité de Pilotage de ce dossier est constitué par la Commission Locale de l'Eau du SAGE du bassin de la Sèvre Nantaise.

1.2.1 Origine de l'étude

Une étude « volumes prélevables » (menée par le bureau d'étude SAFEGE) ayant pour but la définition d'une stratégie de gestion quantitative de la ressource en eau en période d'étiage (c'est-à-dire la période de bas débit des cours d'eau, ici entre avril et octobre) et menée en 2011 et 2012 dans le cadre de la révision du SAGE a permis de mettre en évidence :

- la forte sensibilité aux étiages des sous-bassins versants Petite Maine, Grande Maine, Sèvre amont et Sanguèze et dans une moindre mesure des sous-bassins versants Maine, Sèvre moyenne et de l'Ouin ;
- le fait que l'essentiel des prélèvements est dédié à l'alimentation en eau potable et à l'irrigation, les volumes prélevés pour l'usage industriel représentant moins de 5 % des prélèvements totaux en moyenne. Les sous-bassins versants Grande Maine et Moine sont les plus sollicités par ces prélèvements.

Sur cette base la Commission Locale de l'Eau (CLE) du SAGE a défini l'alimentation en eau potable comme prioritaire, sans remettre en cause les fonctionnalités des milieux aquatiques. Au travers du SAGE approuvé par arrêté préfectoral du 7 avril 2015, la CLE demande que le respect des débits d'objectif d'étiage aux points de mesure permette d'assurer l'équilibre entre les prélèvements et la ressource disponible. Cette étude « volumes prélevables » n'a, en revanche, pas analysé spécifiquement les impacts du changement climatique et ses implications sur l'hydrologie, les milieux et les usages. Elle n'a par ailleurs pas permis de traiter la question de la gestion hivernale de la ressource. Dans la continuité du travail entrepris précédemment, le lancement d'une étude « HMUC » (Hydrologie, Milieu, Usages, Climat) doit ainsi permettre d'actualiser et d'affiner la connaissance.

À l'issue de cette étude HMUC, la Commission Locale de l'Eau doit être en mesure de déterminer des préconisations de gestion de la ressource en eau sur le bassin versant de la Sèvre Nantaise : renforcement des suivis existants (stations hydrologiques et piézomètres), et le cas échéant, définition de nouvelles valeurs de débits objectifs d'étiage, débits écologiques, débits d'alerte, débits de crise et volumes prélevables.

1.2.2 Objet de l'étude

L'étude HMUC doit appréhender et traiter nécessairement les volets hydrologie, milieu, usages et climat, en les rapprochant et en les croisant.

L'étude détaille le fonctionnement hydrologique (et hydrogéologique si nécessaire) du bassin, s'intéresse particulièrement aux usages (plans d'eau, prélèvements, ...). Elle définit des débits écologiques, qui intègrent le débit minimum d'une rivière pour garantir la vie, la circulation et la reproduction des espèces y vivant. Ces débits minimums sont établis pour chaque mois de l'année. Ces débits doivent être comparés aux débits statistiques et notamment au QMNA5.

L'étude identifie les lacunes de connaissances et analyse la pertinence de l'ensemble des indicateurs hydrologiques (et piézométriques) du dispositif de gestion structurelle (y compris en période hivernale), ainsi que du dispositif de gestion de crise sur le bassin versant.

Selon les résultats de cette analyse, elle propose une adaptation des valeurs des débits objectifs d'étiage du SAGE sur le bassin, ainsi que des seuils piézométriques et hydrométriques de gestions de crise. L'opportunité d'ajuster les volumes prélevables, d'encadrer les conditions de prélèvements estivales ou hivernales est également examinée. Des propositions de renforcement du suivi hydrologique et piézométrique seront détaillées si nécessaire.

Les résultats de cette étude doivent permettre :

- d'améliorer les connaissances concernant la ressource en eau et ses usages sur le territoire;
- d'identifier les secteurs en déficit, à risque ou en équilibre ;
- de proposer si nécessaire, une adaptation des objectifs de gestion structurelle (DOE au point nodal du SDAGE, DOEs complémentaires, valeurs de piézométrie objectif d'étiage sur les principaux réservoirs aquifères), des objectifs de gestion de crise, un ajustement des volumes prélevables par unité de gestion et la définition des objectifs hivernaux de débits et de niveaux piézométriques;
- d'engager un volet sur les perspectives d'évolution de tous ces éléments dans le cadre du changement climatique.

Concernant l'étude SAFEGE de 2012 ayant permis une analyse de la gestion quantitative en période d'étiage, il est attendu dans le cadre de l'étude HMUC que ces éléments soient critiqués, consolidés et complétés par les chroniques plus récentes.

Cette étude ne prévoit pas la réalisation d'assistance pour l'élaboration d'un Projet de Territoire pour la Gestion de l'Eau (PTGE). En revanche, à l'issue de l'étude HMUC, d'éventuelles recommandations pourront être établies sur l'opportunité de déclencher une démarche « PTGE ».

1.2.3 Découpage de la mission

Le découpage de cette mission sera effectué en 1 tranche ferme et 8 tranches optionnelles. Les principales prestations attendues dans le cadre de cette prestation sont les suivantes :

Tranches fermes:

- Phase 1 : Analyse des données et définition des besoins complémentaires
- Phase 2 : État des lieux / Diagnostic / Constitution de la modélisation
- Phase 3 : Analyses prospectives : besoins futurs et changement climatique
- Phase 4 : Quantification des volumes prélevables et programme d'actions

Tranches optionnelles:

- Réunion supplémentaire (TO1)
- Détermination des débits écologiques (TO2)
- Définition / adaptation des débits objectifs d'étiage DOE (TO3)
- Définition des objectifs hivernaux de débits et de niveaux (TO4)
- Adaptation des conditions de prélèvement estivales (TO5)
- Adaptation des conditions de prélèvements hivernaux en cours d'eau pour le remplissage des réserves (TO6)
- Gestion de crise Définition / adaptation des DSA et DCR (TO7)
- Ajustement des volumes prélevables toute l'année (TO8)

Le présent rapport concerne la phase 4 : Quantification des volumes prélevables et programme d'actions et les tranches optionnelles TO3 à TO8 associées.

1.3 Étude « Volumes Prélevables » de 2012

L'étude « volumes prélevables », réalisée par le bureau d'études SAFEGE entre 2011 et 2012 avait pour but de définir une stratégie de gestion quantitative de la ressource en eau en période d'étiage. Elle s'est basée sur un découpage du bassin versant de la Sèvre Nantaise en 12 secteurs et sur une analyse sur la période 2000 - 2009 (sans prendre en compte le changement climatique). L'analyse du milieu s'est basée sur 9 stations ESTIMHAB réparties sur le bassin versant.

L'analyse des usages a montré que le bassin versant de la Sèvre Nantaise n'est pas autonome au niveau de son alimentation en eau potable. La consommation moyenne est d'environ 24 millions de m³ dont seulement 40 % sont issus de ressources internes (environ 10 millions de m³). La consommation moyenne sur le bassin est d'environ 135 litres par jour et par habitant.

La répartition des prélèvements constatés au sortir de l'étude est la suivante : en premier lieu l'irrigation des cultures (43 %) puis l'Alimentation en Eau Potable (AEP, autour de 39 %), l'abreuvement des élevages (14 %) et l'industrie qui a une influence très minoritaire (moins de 5 %). Le volume prélevé annuel (hors évaporation des plans d'eau et soutien de débit des barrages) représente environ 31 millions de m³, cela correspond à peu près au volume écoulé à l'exutoire de la Sèvre Nantaise entre août et octobre. L'étude a permis de mettre en évidence un déséquilibre quantitatif et une sensibilité en période d'étiage sur les sous-bassins de la Sèvre amont, de la Sanguèze, de la Grande et de la Petite Maine.

Les rejets (environ 23 millions de m³) sont inférieurs aux prélèvements. Ils correspondent par ordre décroissant à des rejets domestiques (entre 78 %), aux pertes des réseaux AEP (13 %) et aux rejets industriels (9 %).

Concernant les étiages sur le bassin, l'étude a conclu que les bassins des Maines, de la Sanguèze, de la Sèvre Amont et de l'Ouin étaient particulièrement sensibles.

1.4 Objectifs de la phase 4

L'objectif de la phase 4 de l'étude HMUC est de proposer des gammes de valeurs de volumes prélevables et de certains débits réglementaires ayant trait à la gestion de crise.

Différents échanges et concertations ont été menées en COTECH et avec l'Agence de l'Eau Loire-Bretagne pour aboutir aux choix méthodologiques qui sont présentés dans cette note. Il convient de noter que ce rapport vise, sur la base des travaux effectués lors des trois premières phases de cette étude HMUC, et combinant les quatre volets, Hydrologie, Milieux, Usages et Climat, à proposer des gammes de valeurs possibles en termes de volumes prélevables et de débits de gestion de crise, le choix final des valeurs à adopter revenant à la Commission Locale de l'Eau du SAGE de la Sèvre Nantaise.

2 Méthodologie de calcul des volumes prélevables et débits réglementaires théoriques

Dans ce chapitre, nous rappelons tout d'abord les définitions des concepts estimés dans ce rapport, ainsi que les recommandations concernant les choix méthodologiques mis en œuvre pour leur estimation. Nous présentons donc ici des méthodologies utilisées afin de déterminer des valeurs **théoriques** de certaines grandeurs. Comme on le verra, des ajustements au cas par cas de ces valeurs théoriques sont possibles, mais ceux-ci ne peuvent pas être définis ici.

2.1 Définitions et recommandations

D'après le SDAGE Loire-Bretagne en vigueur, le DOE est « un débit moyen mensuel en période de basses eaux au-dessus duquel il est considéré que, dans la zone nodale, l'ensemble des usages est possible en équilibre avec le bon fonctionnement du milieu aquatique ». D'après le Ministère de la Transition Écologique et de la Cohésion des Territoires, « c'est un objectif structurel, arrêté dans les SDAGE, SAGE et documents équivalents, qui prend en compte le développement des usages à un certain horizon (10 ans pour le SDAGE). Il peut être affecté d'une marge de tolérance et modulé dans l'année en fonction du régime (saisonnalité). L'objectif DOE est atteint par la maîtrise des autorisations de prélèvements en amont, par la mobilisation de ressources nouvelles et des programmes d'économies d'eau portant sur l'amont et aussi par un meilleur fonctionnement de l'hydrosystème. »

Ainsi, l'Agence de l'Eau Loire-Bretagne préconise une détermination du DOE entre la valeur minimale du débit environnemental (transposition du débit biologique aux exutoires de chaque unité de gestion) et le débit d'étiage désinfluencé (Figure 1).

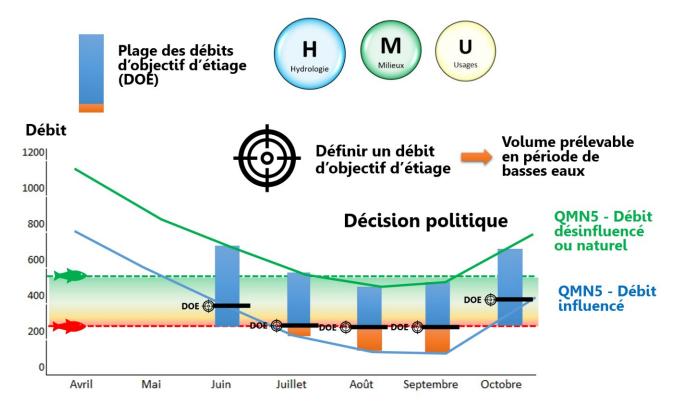


Figure 1: Gammes possibles de détermination du DOE. En pointillés rouges et verts, seuils bas et haut du débit environnemental. Source : présentation de l'AELB.

Selon le guide des études HMUC version 1.1 (AELB, 2023), « La définition réglementaire du **volume prélevable** (VP) issue de l'article R211-21-1 du Code de l'environnement concerne uniquement « les prélèvements directs dans la ressource en période de basses eaux, autorisés ou déclarés tous usages confondus » […] Ne sont pas pris en compte [dans les volumes prélevables], les volumes non soumis à déclaration ou autorisation de prélèvements tels que les volumes liés à l'abreuvement direct dans le milieu ou les volumes diffus comme ceux évaporés par les plans d'eau.

Pour désigner le volume qui peut être **mobilisé dans le milieu naturel** par l'ensemble des usages au sens large, qu'ils soient réglementés ou non, on parlera de **volume potentiellement mobilisable**. » (VPM).

Ces « **volumes potentiellement mobilisables** sont obtenus en faisant la différence entre le DOE et ce que l'hydrologie mensuelle est en mesure de garantir 4 années sur 5 [en moyenne], à savoir les débits mensuels quinquennaux secs de chaque mois. »

Ces définitions des VP et VPM se retrouvent dans les préconisations de l'AELB apportées lors du COTECH 7 (Thirel et al., 2023) (Figure 2 et Figure 3). **On notera que ces définitions ne valent que pour la période de basses eaux. Un calcul différent sera proposé pour la période de hautes eaux.**

Du constat objectif à la valeur concertée

Du DOE au volumes potentiellement mobilisable

VPM = Volume net **global** qui peut être prélevé dans la zone d'influence du point nodal, tout en permettant de respecter le DOE en moyenne 8 années sur 10 et d'atteindre les **objectifs environnementaux du Sdage**

VPM = Volume disponible « consommable »

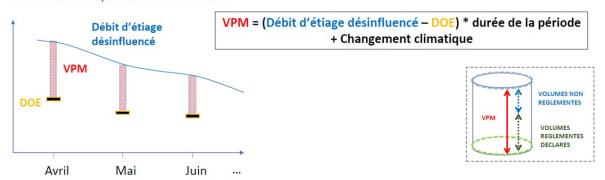


Figure 2: Calcul des VPM à partir du DOE. Source : présentation de l'AELB lors du COTECH 7.

Du constat objectif à la valeur concertée

Du VPM au volume prélevable

- Le volume prélevable, ne concerne que les usages réglementés (AEP, l'irrigation et l'industrie)
 - Déduire les prélèvements non réglementés (abreuvement, évaporation des plans d'eau ...)
- Le volume prélevable doit être défini sur la base des volumes disponibles au point de prélèvement
 - Prise en compte localisée de l'apport des rejets (attention à leur pérennité)

VP (réglementés) = VPM - Volumes prélevés non réglementés (évaporation + abreuvement) + rejets (+ changement climatique)

Importance de la concertation à toutes les étapes

Figure 3: Calcul des VP à partir des VPM. Source : présentation de l'AELB lors du COTECH 7.

Concernant la gestion conjoncturelle, le « **débit d'étiage seuil d'alerte** » (DSA) ne reçoit pas de définition réglementaire. Le Ministère de la Transition Écologique et de la Cohésion des Territoires a défini le DSA comme étant « la **valeur seuil de débit d'étiage qui déclenche les premières mesures de restriction** pour certaines activités (...). En dessous de ce seuil, l'une des fonctions est compromise. Pour rétablir partiellement cette fonction, il faut donc en limiter temporairement une autre : prélèvement ou rejet. En cas d'aggravation de la situation, **des mesures de restriction supplémentaires** sont progressivement mises en œuvre pour éviter de descendre en dessous de crise (**DCR**) » (MTECT, 2023).

Par ailleurs, si les mesures déclenchées par le franchissement du DSA ne suffisent pas, de nouvelles mesures peuvent être déclenchées par le franchissement d'un débit seuil d'alerte renforcée (DSAR). On obtient donc la relation suivante : **DSA** > **DSAR** > **DCR**.

À retenir :

Il existe un cadre réglementaire ainsi que des recommandations des services de l'État afin de déterminer les volumes prélevables ainsi que les débits de gestion conjoncturelle. La méthodologie présentée ci-après a été établie afin de se conformer à ce cadre réglementaire et aux recommandations.

2.2 Éléments généraux de méthodologie

L'ensemble des calculs de **VPM**, de **VP** et de **DOE** a été réalisé à **l'échelle de chacune des Unités de Gestion** (UG localisées sur la Figure 4), et **une valeur a été déterminée par mois**. Il sera néanmoins possible d'agréger dans un second temps après concertation avec les services de l'État (exemple : hors basses eaux + basses eaux hors étiage + printemps et étiage).

On notera que le calcul des VP a été itératif (voir ci-après), et des ajustements ont été nécessaires suite à un premier calcul. De plus, les valeurs proposées dans un premier temps dans ce document, ont servi de base à des déterminations de valeurs de manière concertée entre les acteurs du territoire. Par ailleurs, l'estimation des VP se fait selon deux méthodologies différentes que l'on se trouve en période de hautes eaux ou en période de basses eaux. On parle alors pour la période hivernale de Volumes Potentiellement Disponibles (VPD). Le mois de novembre a été pris en compte dans les calculs à la fois des VP et des VPD, afin de disposer de tous les éléments permettant de le situer ensuite en période de basses eaux ou en période de hautes eaux.

Figure 4: Localisation des unités de gestion de l'étude HMUC

Concernant le **DSA**, le **DSAR** et le **DCR**, le Comité Technique a proposé de déterminer **une valeur annuelle**. Les **points de gestion actuels** ont été utilisés afin de réaliser ces calculs (Figure 5).

Tous les calculs ont été effectués sur la période 2008-2020, qui est la période la mieux connue dans cette étude, et pour laquelle on dispose des données hydrologiques, météorologiques et d'usages les plus abouties.

Voici les étapes mises en œuvre pour la détermination des différentes valeurs de VP et VPD :

- proposition par INRAE de méthodes de calcul et consultation des membres du COTECH et du COPIL du 22/12/2023 au 29/01/2024,
- échanges avec le COTECH le 13/02/2024, demande de précision et ajustement de la méthodologie de calcul,
- proposition par INRAE de valeurs calculées **théoriques** de VP et VPD (ces valeurs figurent en annexe du présent document),
- nouveaux échanges avec le COTECH le 26/03/2024 et ajustement des calculs, afin de déterminer deux scénarios de VP et VPD,
- proposition par INRAE de nouvelles valeurs calculées **théoriques**, discutées lors du COTECH le 08/04/2024,
- échanges avec le bureau de CLE le 21/04/2024,
- proposition à la CLE de valeurs et présentation de la méthodologie le 21/05/2024,
- proposition d'une nouvelle méthode de calculs et échanges avec le COTECH le 18/06/2024. Les valeurs calculées **théoriques** obtenues par ce calcul figurent dans le présent document.

Les valeurs de DSA, DSAR et DCR et leur méthode de détermination ont elles aussi fait l'objet d'un processus itératif.

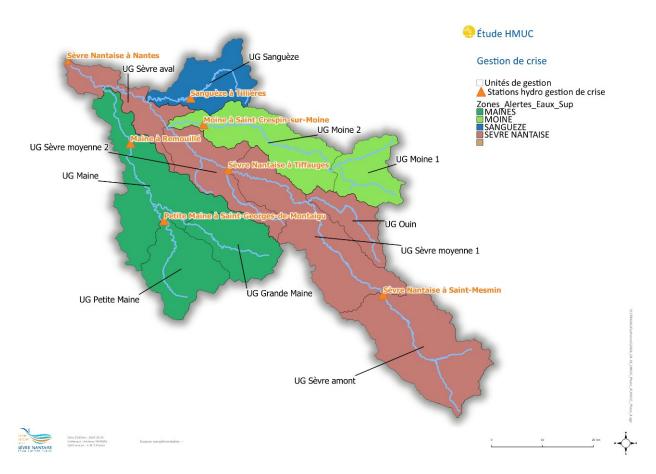


Figure 5: Localisation des zones d'alerte et stations hydrométriques utilisées pour la gestion de crise

À retenir :

A la fois la méthodologie de calcul, ainsi que les valeurs finalement établies, l'ont été dans un processus itératif entre INRAE, l'EPTB Sèvre Nantaise en étroite concertation avec les acteurs du bassin versant au travers du COTECH et de la CLE.

Les volumes prélevables et les volumes potentiellement mobilisables ont été calculés au pas de temps mensuel et pour chaque unité de gestion. Le mois de novembre est considéré dans les calculs à la fois en période de basses eaux et en période de hautes eaux. Il reviendra à la CLE d'arbitrer au sein de laquelle de ces deux périodes le mois de novembre doit être positionné.

Les débits de gestion conjoncturelle ont été calculés à l'échelle annuelle et pour chaque point de gestion actuel.

2.3 Méthodologie de détermination des débits objectifs d'étiage

Comme on l'a vu précédemment, il est recommandé que les valeurs de débits objectifs d'étiage (DOE) se situent entre un seuil bas constitué de la valeur minimale de débit environnemental et un seuil haut constitué par un débit d'étiage désinfluencé. Cette section présente la méthodologie de détermination des DOE. Si ceux-ci peuvent être calculés pour chaque mois de l'année, ils ne sont utilisés que pour le calcul des VP sur la période de basses eaux.

2.3.1 Calcul du débit d'étiage désinfluencé

La mise en place de la modélisation intégrée, couplant un modèle hydrologique de type GR et des usages observés ou extrapolés, permet la simulation de *débits désinfluencés* au pas de temps journalier. En effet, il suffit de désactiver la prise en compte des usages pour déterminer les séries temporelles de débits désinfluencés (cf Phase 2 de l'étude HMUC). Des ajustements ont toutefois été nécessaires pour mieux représenter le fonctionnement du complexe de Ribou / Verdon. Ces ajustements sont présentés dans la partie 2.4.3 et modifient l'hydrologie considérée en phase 2, pour les unités de gestion (par ordre décroissant d'incidence des modifications apportées) Moine 1, Moine 2, Sèvre moyenne 2 et Sèvre aval.

On dispose ainsi de tous les éléments pour calculer des débits d'étiage mensuels désinfluencés. On s'est appuyés pour les caractériser sur les débits mensuels quinquennaux secs désinfluencés (**QMN5désinf**) de la période 2008-2020 (période permettant à la fois de disposer de précipitations observées et d'usages observés/extrapolés). La prise en compte de la démarche prospective (cf Phase 3 de l'étude HMUC) n'intervient donc pas directement dans le calcul mais peut éclairer les valeurs proposées.

2.3.2 Calcul du débit environnemental

Ce calcul est détaillé dans le rapport de Phase 3 (Santos et al., 2023). On reprend les gammes de valeurs qui ont été déterminées lors de la Phase 3 au pas de temps mensuel (**Qenv**). Par la suite, les calculs sont effectués à partir de cette gamme de valeurs de débits environnementaux.

Afin d'étudier différents couples besoins des milieux vs besoins des usages, trois valeurs de débit environnementaux sont considérées :

- Seuil bas de la plage de débits environnementaux
- Valeur intermédiaire de la plage de débits environnementaux (valeur moyenne entre seuil haut et seuil bas)
- Seuil haut de la plage de débits environnementaux

Ces trois valeurs permettent d'obtenir deux scénarios de débits objectifs d'étiage, volumes potentiellement mobilisables et VP ou VPD, afin d'illustrer l'influence des besoins des milieux sur les capacités à prélever pour les usages, et réciproquement.

Pour mémoire, le Tableau 1 présente la synthèse des débits environnementaux retenus à l'issue de la phase 3.

Tableau 1: Synthèse des débits environnementaux à l'exutoire des unités de gestion

		Débits environnementaux retenus (I/s)								
Unité de gestion	Seuil bas juin à sept.	Seuil haut juin à sept.	Seuil bas avril à mai oct. à nov.	Seuil haut avril à mai oct. à nov.	Seuil bas indicatif déc. à mars	Seuil haut indicatif déc. à mars				
UG Sèvre amont	200	450	940	1 880	1 880	5 640				
UG Sèvre moyenne 1	200	580	1 000	3 000	4 000	9 000				
UG Sèvre moyenne 2	340	900	1 490	4 040	5 000	10 580				
UG Sèvre aval	580	1 520	2 300	5 950	9 770	23 920				
UG Ouin	140	300	230	480	930	2 770				
UG Moine 1	80	240	150	570	530	1 140				
UG Moine 2	160	410	580	1 260	1 260	2 100				
UG Sanguèze	50	150	180	640	2 660	9 120				
UG Grande Maine	80	220	250	500	1 420	5 050				
UG Petite Maine	120	290	300	650	550	1 400				
UG Maine	190	470	630	1 270	2 110	4 220				

Pour rappel, la troisième phase de l'étude a permis de mettre en évidence :

- Des besoins variables pour les milieux naturels selon les périodes de l'année :
 - En hiver les forts débits doivent permettre la mise en eau des têtes de bassins versants qui constituent un habitat essentiel pour le frai des salmonidés. Ces débits importants assurent également un rôle de renouvellement des habitats fluviaux, au décolmatage du substrat alluvionnaire et participent à la connexion des annexes hydrauliques (bras morts, prairies inondables, etc.).
 - En début de période printanière, les débits encore soutenus doivent garantir le maintien en eau des annexes de l'hydrosystème, essentielles à la reproduction du brochet. Les mois d'avril et mai correspondent à la période de reproduction des principales espèces cyprinicoles et à la croissance des juvéniles de salmonidés nés plus tôt.
 - Les enjeux de débits en saison estivale s'orientent plus vers la sauvegarde des habitats aquatiques et la possibilité pour les populations de poissons d'accéder à des zones refuges dans lesquelles le renouvellement suffisant des eaux doit permettre d'assurer une qualité (température, oxygène, concentration en polluants notamment) compatible avec le maintien de la vie piscicole.
 - Les mois d'automne correspondent à la reprise des écoulements permettant d'irriguer à nouveau l'ensemble du réseau hydrographique, notamment en tête de bassin versant, et de constituer des débits d'attrait suffisants pour guider les salmonidés vers leurs zones de reproduction.
- Des situations contrastées dans les cours d'eau de la Sèvre Nantaise concernant les conditions de débits pour les peuplements de poissons. La situation la plus critique concerne les cours d'eau du bassin de la Maine pour lesquels les étiages sont défavorables même en l'absence de prélèvements. La situation du sous-bassin de la Sèvre Nantaise constitue un point de vigilance du fait d'une tension sur la ressource en eau plus importante depuis 2017. Il est par ailleurs important de rappeler qu'en situation de débits limitants, la qualité de l'eau se dégrade et par conséquent les conditions défavorables des milieux aquatiques sont globalement exacerbées pour les poissons.
- Une vulnérabilité accrue de ces peuplements dans la perspective du changement climatique, notamment du fait d'une intensification et d'une extension des étiages associées à une augmentation de la température de l'eau.

2.3.3 Propositions de valeurs théoriques du DOE

D'après les éléments fournis précédemment, on obtient la relation suivante :

$$Q_{env} \leq DOE_{th\acute{e}orique} \leq QMN5_{desinf}$$

Il est rappelé que le débit environnemental est entendu comme le débit dans le lit d'un cours d'eau permettant le bon fonctionnement général des communautés vivantes aquatiques. Au sein de la gamme des débits environnementaux, le choix d'une valeur « haute » pour le DOE favorise les milieux au détriment des usages ; réciproquement le choix d'une valeur « basse » soutiendra plus les usages au désavantage des milieux. Le choix de la valeur finale de DOE doit ainsi être le fruit du croisement entre impacts sur les usages et les milieux.

Il est toutefois possible que le QMN5_{desinf} soit inférieur à la valeur minimale des débits environnementaux proposés (**QMN5**_{desinf} < **min(Qenv**)).

Cela indique que les besoins des milieux peuvent ne pas être parfaitement satisfaits en situation quinquennale sèche sans pour autant signifier que cela interdit toute possibilité de développement des espèces considérées.

En cas de débits temporairement insuffisants, voire d'assecs, les poissons se déplacent vers des zones refuges ou des zones plus favorables, si les possibilités de continuité écologique sont satisfaites, puis regagnent les cours d'eau une fois revenues des conditions de débits plus favorables.

Dans les cas où le débit environnemental est supérieur aux débits disponibles, il convient d'augmenter la résilience des zones humides, des cours d'eau et du cycle hydrologique, ceci peut passer par des travaux de renaturation.

Par ailleurs, 4 années sur 5 les conditions de débits désinfluencés sont réputées plus favorables et peuvent possiblement mieux convenir aux besoins des espèces retenues.

Dans le cas où les débits environnementaux sont supérieurs aux QMN5 désinfluencés, le DOE est fixé par défaut au QMN5 désinfluencé et les volumes potentiellement mobilisables sont donc nuls sur le ou les mois en question.

La CLE a formulé la demande de constituer un spectre de valeurs de DOE, bornées par un scénario plus favorable aux milieux (scénario A) et un scénario plus favorable aux usages (scénario B), et donc in fine de VP, avec une valeur haute et une valeur basse.

Ainsi, deux valeurs de DOE, incluses dans la gamme de débits environnementaux définie cidessus, sont évaluées au regard du VP, elles sont calculées de la manière suivante :

- $DOE_B = min(Q_{env,min}, QMN5_{desinf})$
- DOE_A = min(Q_{env} , QMN5_{desinf}), avec $Q_{env} = Q_{env,max}$, si $Q_{env,max} < QMN5_{desinf}$, $Q_{env} = Q_{env,moy}$, sinon

La valeur DOE_B correspond ainsi à une valeur basse et représente donc un scénario favorisant les usages, alors que la valeur DOE_A correspond à une valeur haute, et représente un scénario favorisant les milieux (Figure 6). Pour chacune des deux valeurs, les VPM et VP sont déterminés pour chaque UG. Ces deux scénarios permettent d'encadrer le champ du possible et servent de base de concertation afin de permettre à la Commission Locale de l'Eau d'arrêter les valeurs définitives. Il est cependant possible que tout ou partie de ces valeurs soient égales, lorsque QMN5_{desinf} est inférieur au Q_{env,moy} ou au Q_{env,min}.

La détermination du DOE étant une décision politique, le choix doit résulter d'une concertation. De plus, il est nécessaire d'examiner les conséquences d'une valeur de DOE proposée.

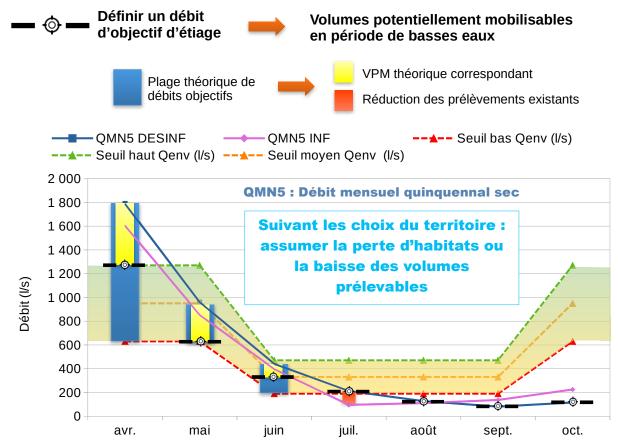


Figure 6: Plages de valeurs possibles pour la détermination des valeurs de DOE

À retenir :

Les valeurs de DOE théoriques sont déterminées pour chaque mois de l'année et pour chaque unité de gestion. Une valeur basse, favorisant les usages, et une valeur haute, favorisant les milieux, sont conservées pour la suite des calculs.

2.4 Méthodologie de calcul des volumes prélevables théoriques en période de basses eaux

2.4.1 Détermination des volumes potentiellement prélevables en période de basses eaux

On notera que le calcul des VPM est effectué à partir des deux valeurs de DOE précédemment déterminées.

2.4.1.1 Détermination des VPM théoriques

Les VPM théoriques sont calculés à partir de la formulation suivante (on rappelle qu'on détermine autant de valeurs de VPM que de mois dans la période de basses eaux ici) :

$$VPM_{th\acute{e}orique} = (QMN5_{desinf} - DOE_{th\acute{e}orique}) * (nb_jours_par_mois) - VPM_{th\acute{e}orique}(amont)$$

Deux valeurs, $VPM_{th\'eorique,A}$, $VPM_{th\'eorique,B}$ correspondant au $DOE_{th\'eorique,A}$ et $DOE_{th\'eorique,B}$ seront considérées. Le $VPM_{th\'eorique}$ est considéré comme nul lorsque le $QMN5_{d\'esinfluenc\'e}$ est inférieur au débit environnemental. Pour les unités de gestion aval, les volumes potentiellement mobilisables des unités de gestion amont ($VPM_{th\'eorique}$ (amont)) sont retirés pour éviter les doubles comptes. La Figure 7 illustre le principe de calcul des VPM sur une UG aval en soustrayant les VPM calculés sur l'UG amont.

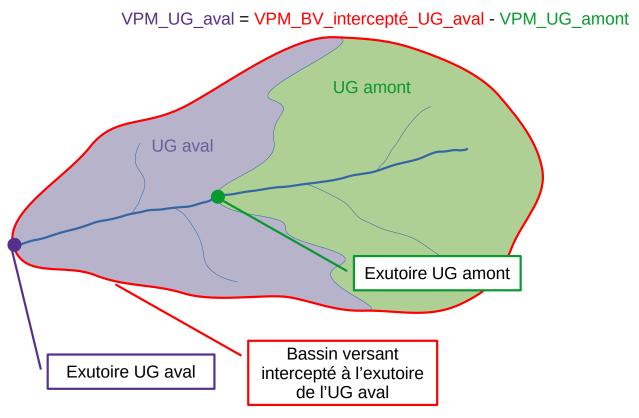


Figure 7: Schéma de calcul des VPM sur une UG aval en soustrayant les VPM de l'UG amont

2.4.1.2 Possibilité de répartition des VPM dans un esprit de solidarité amont-aval

Il se peut qu'il existe un certain **déséquilibre** sur les VPM théoriques de différentes unités de gestion (UG). Par conséquent, il est possible de faire en sorte que certaines UG disposant d'un VPM important voient leur VPM réduit afin d'aider une UG aval disposant d'un VPM plus faible, notamment si les besoins ne peuvent pas être satisfaits.

On part du principe général suivant :

- Lorsqu'une demande de prélèvement pour l'alimentation en eau potable existe sur une unité de gestion, elle est retirée au Volume Potentiellement Mobilisable afin de ne pas prendre en compte ces volumes dans les solidarités amont aval,
- Pour chaque unité de gestion, le Volume Potentiellement Mobilisable est ramené à la surface de l'unité de gestion,
- Si ce calcul montre qu'un surplus de ce Volume Potentiellement Mobilisable ramené à la surface existe sur une unité amont par rapport à ses unités aval, alors le VPM est réparti équitablement sur les unités concernées en tenant compte de leur surface,
- En cas de VPM nul sur les UG amont (si le QMN5 est inférieur au débit environnemental), la solidarité amont-aval ne s'applique pas afin d'éviter d'aggraver le déficit hydrologique sur l'UG amont.

Sous forme équationnelle, la démarche est la suivante (avec S_{UG}: surface de l'unité de gestion) :

- V_{solidarité} = VPM_{UG amont} V_AEP_{UG amont} (le retrait des prélèvements AEP permet de garantir que l'UG amont donatrice ne se retrouvera pas en difficulté pour cet usage)
- $VPM_{UG \text{ amont}} = V_AEP_{UG \text{ amont}} + V_{\text{solidarit\'e}} \times (S_{UG_\text{amont}} / (S_{UG_\text{amont}} + S_{UG_\text{aval}}))$
- $VPM_{UG \text{ aval}} = V_{solidarit\acute{e}} \times (S_{UG_amont} / (S_{UG_amont} + S_{UG_aval}))$

Avec $V_{solidarit\acute{e}}$: volume de solidarité, S_{UG} : surface de l'unité de gestion V_AEP : volume prélevé pour les besoins AEP.

2.4.2 Détermination des volumes prélevables théoriques en période de basses eaux

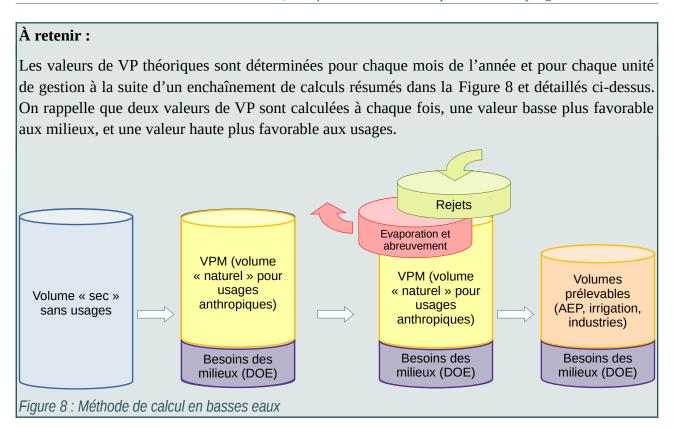
On notera que le calcul des VP est effectué à partir des deux valeurs de VPM précédemment déterminées.

2.4.2.1 Retrait des volumes prélevés non réglementés des VPM

L'abreuvement et l'évaporation des plans d'eau connectés et l'interception du ruissellement en période de basses eaux (en avril, mai et novembre notamment) par les plans d'eau déconnectés pour compenser les pertes par évaporation sont des volumes prélevés non réglementés. Ces volumes sont soit connus ou extrapolés (abreuvement), soit simulés (évaporation) dans la modélisation mise en place. Ils sont calculés au pas de temps journalier et peuvent donc être agrégés au pas de temps mensuel. Il est ainsi possible de les soustraire aux VPM.

2.4.2.2 Prise en compte des rejets

Des rejets ont lieu sur le territoire, notamment via les fuites du réseau d'eau potable et les stations d'épuration. Ces rejets sont connus ou extrapolés. Ils peuvent ainsi être agrégés au pas de temps mensuel. Il est ainsi possible de les ajouter aux VPM. Pour chaque UG, les rejets de STEP (100 %), de pertes du réseau AEP (à 50 %) et d'industries (100 %) dans le milieu naturel sont pris en compte. Pour les unités de gestion Moine 2 et Maine, les restitutions des barrages de Ribou et de Bultière sont aussi intégrés au calcul des volumes prélevables. Ces restitutions correspondent à la différence, lorsqu'elle est positive, entre les volumes sortant et les volumes entrant dans le réservoir. Cependant, les débits réservés ne doivent pas être pris en compte comme des rejets prélevables dans le calcul.


2.4.2.3 Formule de calcul des VP en période d'étiage

Nous suivons la formulation suivante, recommandée par le guide HMUC édité par l'Agence de l'Eau Loire Bretagne :

 $VP_{r\'eglement\'es} = VPM - VP_{non\ r\'eglement\'es} + volume_rejets$

2.4.3 Cas particulier : prise en compte des retenues de Ribou-Verdon et Bultière et ajustements spécifiques

2.4.3.1 Bilans annuels

Le Tableau 2 recense les volumes moyens annuels entre 2008 et 2020 des entrées et sorties dans les retenues de Bultière et Ribou — Verdon. Les volumes pour l'irrigation représentent à la fois les prélèvements dans les retenues elles-mêmes mais aussi dans le sous-bassin amont des barrages.

Tableau 2: Volumes moyens annuels entre 2008 et 2020 des entrées et sorties dans les retenues de Bultière et Ribou-Verdon (en Mm³). La colonne Reste (évap) représente la différence entre volume entrant moins sorties du barrage, prélèvement AEP et prélèvement irrigation

Retenue	Volume entrant	Restitution Barrage	Prel AEP	Prel irrig	Reste (evap)
Bultière	39,354	31,433	5,322	0,464	2,134
Ribou - Verdon	18,79	25,65	4,63	0,41	-11,9

La Figure 9 présente un synoptique du bilan des entrées et sorties de barrages.

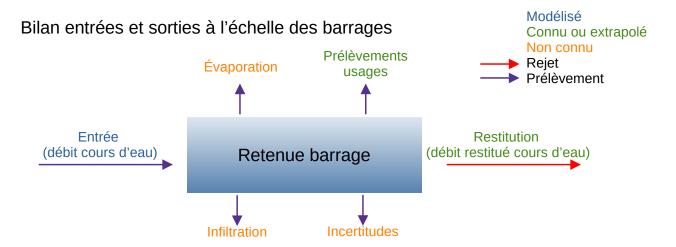


Figure 9: Synoptique du bilan entrées et sorties des barrages. Les termes « Incertitudes + Infiltration + Évaporation » représentent respectivement 2,1 Mm³ pour Bultière et 4,4 Mm³ pour Ribou / Verdon soit respectivement 5 % et 13 % des volumes moyens transitant au sein des UG Grande Maine et Moine 1.

Pour Bultière, l'écart entre les entrées et la somme des sorties est en moyenne de 2,119 Mm³ par an. Ce surplus représente l'évaporation, l'infiltration et les incertitudes depuis la retenue de Bultière mais aussi depuis les 5 plans d'eau d'irrigation situés en amont de Bultière, dans le même sous-bassin versant. Cette valeur ne semble pas aberrante. Le bilan sur la retenue de Bultière est donc considéré comme étant correct.

Pour Ribou, le bilan n'est pas équilibré. En effet, il manque près de 12 Mm³ chaque année pour l'équilibrer (valeur en rouge). Ce déséquilibre a deux causes possibles (valeurs en orange). La première cause possible est que le débit modélisé en amont ne soit pas suffisant. En effet, aucune donnée récente de débit n'est disponible sur le bassin d'alimentation de Ribou / Verdon. Les stations de Mazières-en-Mauges (Trézon) et de Maulévrier (Moine) utilisées pour caler le modèle datent des années 1970 et ont une qualité douteuse. Il est donc impossible de vérifier la qualité des débits amont mais, étant donnée la taille des retenues et les valeurs de débit réservé, il semble que le volume entrant soit sous-estimé. Il est aussi possible que cette erreur soit en partie due à des erreurs d'évaluation du débit sortant au niveau du barrage de Ribou. En effet, une partie du volume est rejeté dans la Moine par surverse, ce qui rend difficile la mesure précise du volume sortant.

Cette incertitude au niveau de l'UG Moine 1 et du barrage de Ribou pose question par rapport au calcul des volumes prélevables. Pour l'UG Moine 1, si les débits entrants sont sous-estimés, cela signifie que les débits désinfluencés le sont aussi probablement. Les volumes prélevables seraient alors sous-estimés sur cette UG. Pour l'UG Moine 2, si les rejets de Ribou (sorties – entrées) sont surestimés, alors les volumes prélevables le seront également. Il est donc nécessaire de repenser le calcul sur ces UG.

Pour l'UG Moine 2, la solution proposée est de prendre en compte les débits corrigés de l'UG Moine 1 (voir ci-après) pour ajuster le bilan entrées — sorties pour identifier les mois où les restitutions de Ribou / Verdon sont supérieures aux débits entrant (*i.e.* mois où Ribou / Verdon génère du soutien d'étiage) et inversement (*i.e.* mois où Ribou / Verdon reconstitue son stock). Cela permettrait de contourner les différentes sources d'incertitude.

Pour l'UG Moine 1, il faut pouvoir corriger le débit entrant. Le remplacement des paramètres du modèle en amont des stations de Mazières-en-Mauges et Maulévrier, obtenus à partir de données de débit anciennes et incertaines par les paramètres obtenus sur l'UG Ouin voisine (à partir de données actuelles et de bonne qualité) permet de rétablir un bilan beaucoup plus réaliste. En effet, en utilisant ces paramètres, le volume entrant annuel passe à 35.105 Mm³ ce qui permet de compenser à la fois les sorties du barrage et les prélèvements. Le terme de reste, censé correspondre à l'évaporation depuis les retenues (et les plans d'eau d'irrigation en amont), passe ainsi de -11.900 à 4.413 Mm³. Cette valeur d'évaporation, bien que relativement faible par rapport à la valeur obtenue sur Bultière (étant donné l'écart de surface entre les retenues) semble cependant plutôt élevée par rapport à la réalité. Étant donnée l'incertitude existant sur les rejets de Ribou (voir paragraphe suivant), elle est toutefois jugée comme acceptable.

Pour tester la mesure au niveau du barrage de Ribou, il est possible de comparer ces restitutions au débit mesuré au niveau de la station hydrologique de Cholet. Cette comparaison s'effectue en enlevant l'effet des différents usages (notamment la station des Cinq Ponts). Si les rejets de Ribou étaient supérieurs ou proches des débits à Cholet moins les rejets nets sur le sous-bassin cela montrerait une surestimation des rejets au niveau de Ribou. Or ce n'est pas le cas, il y a une différence de 10.228 Mm³ entre les débits de Cholet et ceux de Ribou, ce qui correspond à environ 30 % des précipitations annuelles sur le sous-bassin, ce qui n'est pas aberrant (bien que légèrement inférieur à ce qui est observé dans les sous-bassins environnants). Même si cette analyse n'est pas suffisante pour prouver qu'il n'y a pas de biais sur les données de restitution du barrage, elle tend à montrer que l'erreur de bilan ne peut être uniquement le fait d'erreurs de mesures au niveau de Ribou. Aux vues des précipitations, cette surestimation des restitutions du barrage pourrait difficilement dépasser les 2 Mm3. Si une erreur systématique existe sur les rejets de Ribou, il s'agit nécessairement d'une surestimation car une valeur de coefficient de ruissellement de 30 % est plus faible de quelques pourcents par rapports aux sous bassins environnants. Les modifications apportées sur l'UG Moine 1 et évoquées dans les paragraphes précédents sont donc conservées par la suite.

2.4.3.2 Bilans mensuels

Les conséquences de ces modifications au niveau du paramétrage sont analysées au niveau mensuel, tant pour calculer les rejets mensuels des barrages au travers du bilan entre entrées et sorties que pour évaluer la part des prélèvements AEP des deux usines qui correspond à un prélèvement réglementé. Les prélèvements pour l'AEP dans les réservoirs de Bultière et de Ribou ne sont pas systématiquement découplés de l'hydrologie. Si une partie des prélèvements sont issus du stock hivernal, une autre partie est prélevée durant la période de basses eaux. Pour évaluer cette partie, un bilan mensuel entre entrées et sorties des retenues est effectué. Ce bilan est le même que celui qui a été effectué pour calculer les rejets des barrages dans le calcul des volumes prélevables. Lorsque le bilan mensuel « entrée – restitution » est négatif, il s'agit d'un rejet net vers l'UG aval. En revanche, si le bilan est positif, il s'agit d'un prélèvement et le volume d'AEP prélevé à cette période est compté comme un volume prélevé réglementé tant qu'il ne dépasse pas le prélèvement pour remplir la retenue.

La Figure 10 illustre la prise en compte du rôle des barrages selon cette approche « entrée - restitution ».

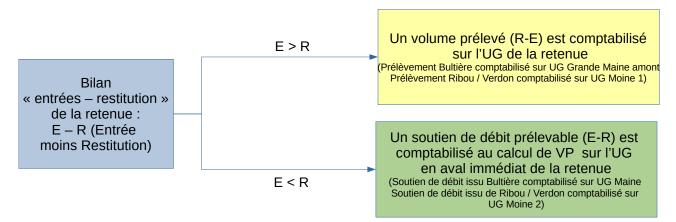


Figure 10: Répartition du bilan « entrée - restitution » des barrages de Bultière et Ribou / Verdon

Le Tableau 3 montre la différence mensuelle entre les entrées et restitutions de chaque barrage ainsi que le volume d'AEP prélevé en volume réglementé ou non. En bleu figurent les périodes de remplissage et en vert les périodes de rejets. Ces bilans sont faits à l'échelle mensuelle car à l'échelle journalière les volumes de prélèvement AEP de Ribou sont extrapolés (ils ne sont pas connus précisément).

Tableau 3: Bilans mensuels des barrages de Bultière et Ribou-Verdon (NB : le mois de novembre reste placé en période de hautes eaux à cette étape, conformément au cadre général du SDAGE, la décision de son placement en hautes ou basses eaux n'étant pas encore effectuée par la CLE).

		На	utes ea	лх			Ва	isses ea	ux			Hautes	eaux	
Retenue	Valeur					Va	aleurs m	nensuell						
		Jan	Fév	Mar	Avr	Mai	Jun	Jul	Aoû	Sep	Oct	Nov	Déc	Total
	Bilan entrée – restitution	1,047	0,809	1,079	0,062	0,338	0,112	-0,180	-0,181	-0,146	-0,074	2,607	2,449	7,921
	Prélèvement AEP	0,406	0,371	0,445	0,450	0,476	0,473	0,509	0,483	0,468	0,451	0,393	0,397	5,322
Dultièro	Volume débit réservé*	0,429	0,387	0,429	0,415	0,429	0,415	0,429	0,429	0,415	0,429	0,415	0,429	5,046
	AEP réglementé basses eaux	0	0	0	0,062	0,338	0,112	0	0	0	0	0	0	0,512
Bultière	Soutien débit basses eaux	0	0	0	0	0	0	-0,180	-0,181	-0,146	-0,074	0	0	-0,581
	AEP réglementé hautes eaux (hors constitution stock)	0,406	0,371	0,445	0	0	0	0	0	0	0	0,393	0,397	2,013
	Constitution stock réglementé hautes eaux	0,641	0,438	0,632	0	0	0	0	0	0	0	2,214	2,052	5,977
	Bilan entrée – restitution	3,021	1,224	1,326	0,375	0,251	-0,198	-0,942	-1,301	-0,874	0,407	2,424	3,740	9,452
	Prélèvement AEP	0,368	0,339	0,371	0,390	0,399	0,411	0,435	0,419	0,407	0,391	0,361	0,342	4,634
	Volume débit réservé*	0,134	0,121	0,134	0,130	0,134	0,130	0,134	0,134	0,130	0,134	0,130	0,134	1,577
Ribou -	AEP réglementé basses eaux	0	0	0	0,375	0,251	0	0	0	0	0,391	0	0	1,017
Verdon	Soutien débit basses eaux	0	0	0	0	0	-0,198	-0,942	-1,301	-0,874	0	0	0	-3,315
	AEP réglementé hautes eaux (hors constitution stock)	0,368	0,339	0,371	0	0	0	0	0	0	0	0,361	0,342	1,782
	Constitution stock réglementé hautes eaux	2,652	0,885	0,954	0	0	0	0	0	0	0,012	2,063	3,398	9,964

^{*} Hypothèse débit réservé : 160 l/s pour Bultière | 50 l/s pour Ribou

Au niveau du prélèvement de Bultière, 0.512 Mm³ de prélèvement AEP sont considérés, pour les besoins des calculs, comme des volumes réglementés en période de basses eaux. Pour Ribou, ce volume s'élève à 1.017 Mm³ en période de basses eaux.

2.5 Méthodologie de calcul des volumes potentiellement disponibles théoriques en période de hautes eaux (Recommandations du SDAGE Loire Bretagne)

La méthodologie suit la disposition 7D-5 du SDAGE Loire Bretagne qui impose, sur les bassins concernés par la disposition 7B-3 (ce qui est le cas du bassin versant de la Sèvre Nantaise), la prise en compte de la disposition 7D-4 comme une préconisation. Pour information, la disposition 7D-5 du SDAGE est une obligation dans les bassins en Zone de Répartition des Eaux (ZRE) :

Lors de prélèvement en cours d'eau, le débit minimal à maintenir dans le cours d'eau à l'exutoire du bassin versant doit être égal au module.

Le SAGE peut adapter ce débit minimal, après réalisation d'une analyse HMUC, notamment dans le cadre de la définition d'un projet de territoire pour la gestion de l'eau (PTGE), sans le porter en deçà du débit moyen interannuel de fréquence quinquennale sèche.

Au regard de ces recommandations il est proposé de retenir un **débit plancher** avant démarrage des prélèvements pour remplissage des retenues hors substitution correspondant au **module désinfluencé** (valeur par défaut recommandé par le SDAGE).

L'enjeu de ce débit plancher est de maintenir les crues hivernales qui jouent un rôle majeur tant pour la migration des espèces piscicoles que pour la revitalisation des habitats aquatiques, la connectivité des annexes hydrauliques et la préservation du régime hydrologique sur l'année.

Le débit de prélèvement autorisé pour le remplissage des retenues hors substitution est contraint par un débit plafond de prélèvements cumulés hors période de basses eaux. Au cours de la période autorisée pour le remplissage des retenues hors substitution, le cumul de tous les débits maximum des prélèvements réglementés sur un bassin versant, y compris les interceptions d'écoulement, n'excède pas un cinquième du module interannuel du cours d'eau* (0,2 module) à l'exutoire de ce bassin-versant. Dans les bassins versants présentant un régime hivernal particulièrement contrasté, dont le rapport au module du débit moyen mensuel inter-annuel maximal est supérieur à 2,5, ce débit plafond peut être porté à 0,4 module.

Le Sage peut adapter le débit plafond de prélèvement autorisé, après réalisation d'une analyse HMUC, notamment dans le cadre de la définition d'un projet de territoire pour la gestion de l'eau (PTGE), sans dépasser 0,4 module (ou 0,6 module pour les bassins versants au régime particulièrement contrasté).

Les aménagements bénéficiant d'une déclaration d'utilité publique ou d'une déclaration d'intérêt général, les prélèvements pour l'alimentation en eau potable et la sécurité civile ainsi que les

grands ouvrages de production d'électricité ne sont pas concernés par les modalités de prélèvement décrites dans les dispositions 7D-3 à 7D-5.

Au regard de ces recommandations il est proposé de réaliser les calculs pour des **débits maximaux de prélèvements réglementés de 20 % du module (scénario « A » plus favorable aux milieux), et de 40 % du module (scénario « B » plus favorable aux usages).** La possibilité d'autoriser des prélèvements réglementés à hauteur de 60 % du module pour les cours d'eau contrastés pour le scénario B a été écartée par le COTECH car elle conduisait à réduire à néant les possibilités de prélèvements sur l'unité de gestion Sèvre aval.

Les calculs de VPD en hautes eaux sont produits pour identifier le volume disponible pour réaliser de la substitution. Il convient de préciser que si cette substitution est mise en œuvre, les volumes de hautes eaux seront amputés des volumes de basses eaux substitués.

Il est également rappelé que l'instruction du 14 décembre 2023 indique que les volumes disponibles en hautes eaux ne sont pas forcément des volumes disponibles pour du stockage. Cette même instruction fait aussi référence à des usages anthropiques.

Les calculs sont effectués de façon journalière sur la période de hautes eaux des années 2008 à 2020. Ils sont ensuite agglomérés de façon mensuelle sur chacune des années afin de déterminer une valeur moyenne mensuelle de prélèvement.

Cette réflexion doit mener à préserver un débit plancher comme étant le débit minimum à maintenir dans le cours d'eau. Il est donc important que les prélèvements n'engendrent pas un passage en deçà du plancher. Afin de limiter ce risque, la coordination des prélèvements à l'échelle des unités de gestion apparaît comme une sécurité supplémentaire. Aussi, il peut être proposé 2 valeurs de volumes de prélèvement (Figure 11) :

- une en gestion individuelle correspondant au volume de prélèvement calculé une fois le débit maximum de prélèvement atteint,
- une en gestion coordonnée correspondant au volume de prélèvement calculé une fois le débit plancher dépassé (module).

Ainsi, la gestion individuelle ne démarrerait qu'une fois le seuil de prélèvement atteint (exemple 1,4 x Module dans le cas de la tranche 0,4 x Module), là où la gestion coordonnée pourrait démarrer dès le débit plancher. Cette idée sous-tend que la gestion coordonnée, en étant encadrée, permet une meilleure coordination des prélèvements et évite un jeu d'arrêt / reprise des prélèvements autour du débit plancher.

Comme pour les volumes potentiellement mobilisables, les VPD hivernaux des unités amont sont retirés à ceux des unités aval pour éviter les doubles comptes.

À retenir :

Les valeurs de VPD théoriques sont déterminées pour chaque mois de la période de hautes eaux et pour chaque unité de gestion et fait intervenir l'utilisation de tranches de débits comme détaillé cidessus. Deux valeurs de VPD sont calculées à chaque fois, une valeur basse plus favorable aux milieux, et une valeur haute plus favorable aux usages, selon différentes configurations des calculs. Par ailleurs, chacune de ces deux options sont raffinées grâce à la considération alternativement d'une gestion coordonnée ou d'une gestion individuelle.

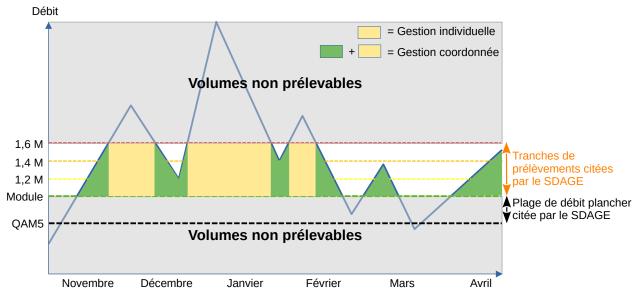


Figure 11: Exemple de prise en compte d'une gestion coordonnée ou individuelle pour le calcul des Volumes Prélevables en période de hautes eaux avec des prélèvements possibles jusqu'à hauteur de 0,6 x Module

2.6 Synthèse des hypothèses proposées pour les scénarios A (favorable aux milieux) et B (favorable aux usages)

Afin de constituer une base de discussion à soumettre aux éclairages du COTECH, deux scénarios ont été imaginés. Un scénario A qui oriente les paramètres de calculs vers la satisfaction des besoins des milieux naturels, un scénario B qui tend à favoriser les prélèvements d'eau à des fins d'usages anthropiques.

Le Tableau 4 synthétise le pré-paramétrage général de ces scénarios :

Tableau 4: Pré-paramétrage des scénarios « A » et « B ».

Période	Paramètres	Scénario A	Scénario B			
	Novembre	En basses ou hautes eaux : A définir par COPIL				
	Fixation DOE	Min(Max(Débit env (moy, max) ≤ QMN5 DESINF) QMN5 DESINF)	Min(Débit env MIN QMN5 DESINF)			
Basses	Part des pertes AEP prélevables	50 %	50 %			
eaux	Part prélevable rejets STEP et industries*	100 %	100 %			
	Part prélevable débit réservé barrages*	0 % confirmé par DDT	0 % confirmé par DDT			
	Part prélevable soutien d'étiage**	100 % confirmé par DDT	100 % confirmé par DDT			
Hautes eaux	Débit plancher pour démarrage prélèvements en gestion individuelle (GI) / gestion coordonnée (GC)	GI : dès 1,4 x module GC : dès 1,2 x module	GI : dès 1,4 x module GC : dès 1 x module			
	Tranche prélèvement	0,2 x module	0,4 x module			

QMN5 : débit mensuel quinquennal sec

INF: hydrologie influencée (avec prise en compte des usages)

DESINF : hydrologie désinfluencée (sans prise en compte des usages)

Le paramétrage de ces scénarios a été débattu lors des diverses réunions de Comité Technique et de CLE et a fait l'objet de plusieurs ajustements.

A noter que concernant la fixation du DOE pour le scénario B, des adaptations de la règle générale « Min(Débit env MIN | QMN5 DESINF) » ont été proposées par le Comité Technique. Ces adaptations ont consisté à revoir à la hausse la valeur de DOE en considération des impacts importants sur les milieux naturels au droit des unités de gestion Sèvre amont et Sèvre moyenne 1 présentant des enjeux particuliers (réservoirs biologiques et territoires d'intervention prioritaire au titre du Contrat Territorial Eau 2024 – 2026). Par souci de cohérence hydrologique, les DOE de l'unité de gestion Sèvre moyenne 2 ont également fait l'objet d'ajustements. Le tableau 5 présente les valeurs proposées par le comité technique au regard des valeurs initiales.

^{*} Si compatible avec hypothèse DOE choisi

^{**} Uniquement pour Ribou / Verdon (hypothèse d'absence de soutien d'étiage pour Bultière)

Tableau 5: DOE ajustés par le COTECH pour le scénario B. Entre parenthèses les valeurs initiales issues de la règle générale « Min(Débit env MIN | QMN5 DESINF) »

	DOE (I/s)							
	UG Sèvre amont	UG Sèvre moyenne 1	UG Sèvre moyenne 2					
juin	325 (200)	390 (200)	485 (340)					
juil.	325 (200)	390 (200)	485 (340)					
août	200 (200)	270 (200)	340 (340)					
sept.	200 (200)	270 (200)	340 (340)					

De plus, le tableau 6 présente les choix (communs aux scénarios A et B) proposés par le Comité Technique pour différents paramétrages méthodologiques permettant de calculer les volumes prélevables et les volumes potentiellement disponibles.

Tableau 6: Paramétrages méthodologiques communs aux scénarios A et B.

	Item	Impact	Proposition du COTECH	
Basses eaux VP	Solidarité amont → aval	Répartition des possibilités de prélèvements en UG	Activé	
	Report des VPM et VP négatifs sur l'UG aval	Plus protecteur des milieux si activé	Activé	
	Part prélevable des rejets	Plus protecteur des milieux si part prélevable faible	Part prélevable importante	
	Report sur l'UG aval des rejets non prélevables	Plus protecteur des milieux si non activé	Activé	
	DOE	Plus protecteur des milieux si valeurs hautes retenues	Gamme de valeurs, choix à effectuer par le COPIL	
	Agrégation des VP par période	Si agrégation trop grossière, faible adéquation aux variabilités saisonnières	2 sous-périodes : printemps et très basses eaux	
	Gestion coordonnée ou individuelle	Limite le risque de passage sous le débit plancher si gestion coordonnée, mais plus de prélèvements	Calcul des VPD pour les 2 modalités et les scénarios A et B	
Hautes Eaux	VPD négatif reporté sur l'UG aval	Plus protecteur des milieux si activé	Activé	
VPD	Débit plancher	Plus protecteur des milieux si débit plancher fort	Scénarios A et B proposés, choix à effectuer par le	
	Tranche prélèvements	Plus protecteur des milieux si taux de prélèvement faible	COPIL	
	Basses eaux	Variable selon conditions hydrologiques de l'année, interdiction de créer de nouveaux prélèvements, VP moins importants	Novembre en basses eaux	
Novembre	Hautes eaux	Variable selon conditions hydrologiques de l'année, nouveaux prélèvements possibles, VP plus importants	choix à effectuer par le COPIL	

2.7 Prise en compte du changement climatique

Le calcul des différents volumes ou débits ne considère pas de prise en compte du changement climatique. Néanmoins, la modélisation mise en place permet l'utilisation en entrée de projections climatiques. Celles-ci ont été définies dans le rapport de Phase 3 (Santos et al., 2023). Par ailleurs, il est tout à fait possible de désactiver les influences humaines tout en prenant en compte les projections climatiques. Enfin, il a été possible de considérer des scénarios d'usages constant, tendanciel et alternatif.

Afin de prendre en compte le changement climatique, c'est-à-dire comment les usages et le respect du DOE se situeront dans le futur, on a effectué les analyses suivantes :

- Analyse de l'évolution du taux de satisfaction globale des usages dans le futur selon les trois scénarios d'évolution des usages étudiés en phase 3,
- Analyse de l'évolution des prélèvements en eau dans le futur établie à partir des trois scénarios d'usages futurs (permettant de considérer l'impact de l'évolution du climat et des usages),
- **Analyse du respect du DOE** sous le scénario d'usages constants en dénombrant les occurrences de passages sous le DOE.

Le Tableau 8 présente une synthèse de l'indicateur « taux de satisfaction globale des usages » étudié dans le cadre de la phase 3 de l'étude. Cela signifie, par rapport à une demande en eau donnée, quel est le pourcentage de celle-ci qui a pu être satisfaite. Pour 2030, une baisse sensible de la satisfaction des usages est à prévoir, même si cette satisfaction reste généralement satisfaisante. Les UG de l'aval du bassin (Sanguèze, Sèvre aval et moyenne 2) seront cependant plus sensibles aux changements. Le scénario alternatif est celui permettant une meilleure satisfaction de la demande en eau.

Pour 2050, une baisse sensible de la satisfaction des usages est à prévoir, même si elle reste similaire à celle de 2030. En comparaison par rapport à 2030, l'ensemble des UG sera impacté à l'exception des UG Sèvre amont, Ouin et Moine 1. Le scénario alternatif permet une meilleure satisfaction de la demande en eau. Par opposition, le scénario tendanciel se détache car il apporte moins de satisfaction des usages.

La baisse de la satisfaction des usages prévue pour 2070 devrait être plus importante qu'en 2050 et 2030. L'ensemble des UG sera impacté à l'exception des UG Ouin et Moine 1.

Le Tableau 7 présente l'évolution des prélèvements futurs en pourcentage, entre la période de référence et les 3 horizons futurs, sous trois scénarios d'usages futurs. Pour cela, les 5 projections climatiques sélectionnées dans la phase 3 de l'étude sont utilisées, et l'on présente ici l'évolution maximale et l'évolution minimale. On observe que les prélèvements futurs sont en augmentation pour la plupart des horizons et des UG pour les scénarios à usages constants et tendanciel. Seul le scénario alternatif montre quelques diminutions, mais ce n'est pas le cas pour l'ensemble des UG et des horizons.

En croisant les résultats sur les prélèvements et le taux de satisfaction de la demande en eau, on observe une augmentation des prélèvements et une baisse de la satisfaction, ce qui signifie que la part de la demande en eau qui ne peut pas être à 100 % satisfaite est en augmentation encore plus forte. Ainsi, l'augmentation des prélèvements pour le scénario constant, qui s'accompagne par une baisse de la satisfaction, est alors expliqué par une augmentation de la demande en eau des plantes en raison d'un climat plus chaud. En résumé, il paraît possible sous certaines conditions de satisfaire des prélèvements plus élevés, mais au prix d'un respect moindre de la demande totale.

Tableau 7 : Evolution des prélèvements futurs pour les différents scénarios d'usages et climatiques et pour les différents horizons par rapport à la période 1976-2005

Pourcentage d'évolution des prélèvements futurs								
Unité Costion	Scénario	Horizor	າ 2030	Horizor	າ 2050	Horizo	n 2070	
Unité Gestion	usages	Min	Max	Min	Max	Min	Max	
	Constant	5,2	7,9	4,6	9,3	4,9	11,1	
Sèvre aval	Tendanciel	8,4	13,2	5,2	12,3	5,3	12,3	
	Alternatif	4	11,9	4,4	10,5	2,5	6,4	
Sèvre	Constant	10,7	15,9	16,3	21,2	18,3	26,7	
moyenne 2	Tendanciel	15,9	21	19,6	25,8	19,3	30	
	Alternatif	-1,8	6,8	-1,8	11,6	9,4	15,7	
Sèvre	Constant	7,2	9,1	7,1	10,7	8,4	13,6	
moyenne 1	Tendanciel	11,1	13,1	10,4	14,8	7,7	13,9	
	Alternatif	-0,9	2,2	-4,3	0,6	-0,1	2,3	
	Constant	10,5	14,7	11,9	18,2	17,6	23,5	
Sèvre amont	Tendanciel	11,1	15,7	6,3	13,9	5,7	13,2	
	Alternatif	-7,2	-0,6	-14,8	-4,9	-6,9	0,5	
	Constant	3,9	9,9	6,6	14,4	6,4	20,5	
Sanguèze	Tendanciel	4	10,6	1,3	10,6	-3,1	9,6	
	Alternatif	-6,6	0,5	-8,8	-4,7	-11,5	-4,2	
	Constant	9,9	19,6	14,4	25,4	22,2	33,7	
Maine	Tendanciel	12,8	22,2	15,9	26,3	23,1	35,5	
	Alternatif	0,1	10,6	0,7	13,8	11	20,9	
	Constant	8,7	14,7	11,2	19,4	17,2	26,1	
Petite Maine	Tendanciel	5,3	11	0,1	9,2	3	12,4	
	Alternatif	-3,5	3	-9,6	1	-6	3,1	
	Constant	4,8	5,6	5,2	6,4	6	7,3	
Grande Maine		4	5	4,1	5,9	4,1	5,8	
	Alternatif	-3,5	-2,6	-6,3	-4,5	-2,2	-0,8	

		Pourcentage (d'évolution de	es prélèvemer	nts futurs		
Unité Gestion	Scénario	Horizon	2030	Horizor	2050	Horizor	ո 2070
Office Gestion	usages	Min	Max	Min	Max	Min	Max
	Constant	8,5	18,2	8,9	24,3	21,8	31,9
Moine 2	Tendanciel	14,2	24,9	11	29	21	33,6
	Alternatif	-3,5	7,5	-7,5	9,8	1	15,7
	Constant	4,6	6,6	4,7	8,1	7,5	10,6
Moine 1	Tendanciel	9,1	11,5	14,6	18,5	19,3	23,1
	Alternatif	-1	1,1	-0,8	3,1	7,6	10,2
	Constant	5,4	6,6	6,3	7,4	6,5	8,7
Ouin	Tendanciel	5,2	6,7	3,4	5,2	-0,7	2
	Alternatif	-3	-1,2	-7,1	-4,4	-6,2	-5

Tableau 8: Taux de satisfaction globale des usages aux horizons 2030, 2050 et 2070. Légende : Violet foncé : > 90 %, Violet moyen : < 90 % & > 80 %, Violet clair : < 80 % & > 70 %, Jaune clair : < 70 % & > 60 %, Jaune : < 60 % & > 50 %.

			Taux c	le satis	sfaction	n globa	ale des	usage	s				
Unité	Scénario	His	storiqu	ie	Hor	izon 20	30	Hor	izon 20)50	Hor	izon 20	70
Gestion	usages	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max
	Constant	0,92	0,92	0,93	0,86	0,89	0,93	0,84	0,88	0,94	0,78	0,83	0,89
Sèvre aval	Tendanciel	0,92	0,92	0,93	0,85	0,88	0,92	0,82	0,87	0,93	0,76	0,81	0,88
	Alternatif	0,92	0,92	0,93	0,91	0,93	0,96	0,89	0,92	0,97	0,84	0,88	0,93
03	Constant	0,82	0,83	0,84	0,75	0,79	0,83	0,71	0,77	0,85	0,64	0,7	0,78
Sèvre moyenne 2	Tendanciel	0,82	0,83	0,84	0,72	0,76	0,81	0,68	0,74	0,82	0,6	0,66	0,75
moyemic 2	Alternatif	0,82	0,83	0,84	0,83	0,85	0,89	0,8	0,85	0,91	0,73	0,77	0,84
O 3	Constant	0,9	0,9	0,91	0,84	0,87	0,91	0,82	0,86	0,91	0,76	0,8	0,86
Sèvre moyenne 1	Tendanciel	0,9	0,9	0,91	0,82	0,85	0,89	0,79	0,84	0,9	0,73	0,77	0,84
moyerme r	Alternatif	0,9	0,9	0,91	0,89	0,91	0,94	0,87	0,9	0,95	0,82	0,85	0,9
C 3	Constant	0,93	0,93	0,94	0,87	0,9	0,94	0,85	0,89	0,95	0,8	0,84	0,9
Sèvre amont	Tendanciel	0,93	0,93	0,94	0,85	0,89	0,92	0,81	0,86	0,93	0,74	0,8	0,87
amont	Alternatif	0,93	0,93	0,94	0,92	0,94	0,97	0,9	0,93	0,98	0,84	0,88	0,93
	Constant	0,79	0,8	0,82	0,71	0,74	0,79	0,69	0,73	0,8	0,63	0,68	0,76
Sanguèze	Tendanciel	0,79	0,8	0,82	0,69	0,72	0,77	0,66	0,71	0,78	0,6	0,64	0,72
	Alternatif	0,79	0,8	0,82	0,78	0,8	0,86	0,74	0,79	0,86	0,68	0,72	0,8
	Constant	0,85	0,86	0,87	0,8	0,83	0,86	0,77	0,81	0,85	0,73	0,77	0,83
Maine	Tendanciel	0,85	0,86	0,87	0,76	0,79	0,83	0,73	0,77	0,81	0,68	0,72	0,77
	Alternatif	0,85	0,86	0,87	0,86	0,87	0,91	0,82	0,85	0,9	0,76	0,8	0,86
Detite	Constant	0,91	0,92	0,93	0,88	0,9	0,92	0,85	0,88	0,91	0,82	0,85	0,89
Petite Maine	Tendanciel	0,91	0,92	0,93	0,84	0,87	0,89	0,81	0,84	0,87	0,76	0,79	0,83
Widilio	Alternatif	0,91	0,92	0,93	0,91	0,92	0,95	0,87	0,9	0,94	0,83	0,86	0,91
Crando	Constant	0,98	0,98	0,99	0,97	0,98	0,98	0,96	0,97	0,98	0,95	0,96	0,98
Grande Maine	Tendanciel	0,98	0,98	0,99	0,97	0,97	0,98	0,96	0,97	0,98	0,94	0,96	0,97
Widinio	Alternatif	0,98	0,98	0,99	0,98	0,99	0,99	0,98	0,98	0,99	0,96	0,97	0,98
	Constant	0,9	0,92	0,92	0,87	0,89	0,9	0,86	0,88	0,9	0,81	0,85	0,88
Moine 2	Tendanciel	0,9	0,92	0,92	0,84	0,88	0,89	0,83	0,86	0,88	0,79	0,83	0,86
	Alternatif	0,9	0,92	0,92	0,92	0,93	0,95	0,92	0,93	0,95	0,86	0,9	0,92
	Constant	0,98	0,99	0,99	0,98	0,98	0,99	0,97	0,98	0,98	0,95	0,97	0,98
Moine 1	Tendanciel	0,98	0,99	0,99	0,97	0,98	0,98	0,97	0,98	0,98	0,95	0,97	0,98
	Alternatif	0,98	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,97	0,98	0,99
	Constant	0,97	0,97	0,97	0,94	0,96	0,98	0,93	0,95	0,98	0,89	0,91	0,95
Ouin	Tendanciel	0,97	0,97	0,97	0,93	0,95	0,97	0,91	0,93	0,97	0,87	0,89	0,93
	Alternatif	0,97	0,97	0,97	0,96	0,97	0,99	0,95	0,97	0,99	0,92	0,94	0,96

Les Tableau 9 et Tableau 10 présentent le nombre de jours de franchissement de la valeur de DOE, pour le scénario d'usages constants et les 5 scénarios climatiques, la période historique et les trois horizons 2030, 2050 et 2070 pour chacun des scénarios A et B.

Le scénario B, moins protecteur pour les milieux naturels, présente des valeurs de DOE généralement plus faibles que le scénario A. Il apparaît donc logique que les franchissements sous les valeurs de DOE proposées pour ce scénario soient moins fréquents que pour le scénario milieux. L'UG Ouin reste toutefois la plus sensible au risque de franchissement du DOE quel que soit le scénario sur la période de juillet à octobre et ce dès l'horizon proche. Pour le scénario A, les unités de gestion Sèvre amont, Sèvre moyenne 1 en juillet, août, septembre et partiellement octobre et dans une moindre mesure Moine 1 et Moine 2 en mai apparaissent également comme celles enregistrant le plus grand nombre de franchissements.

En termes d'horizon temporel, les franchissements du DOE sur la période de très basses eaux (juillet à octobre) tendent à devenir plus fréquents à mesure que l'on se rapproche de l'échéance lointaine (2070).

Tableau 9: Nombre de jours par mois de franchissement de la valeur de DOE pour le scénario A plus favorable aux milieux sous usages constants. Légende : Violet foncé : < 5 j. Violet moyen : < 10j & > 5j. Violet clair : < 15j & > 10j. Jaune clair : < 20j & > 15j. Jaune : > 20j.

							Nombr	e de jou	rs par m	nois de 1	ranchis	sement (de la val	leur de [OOE pou	ur le scéi	nario A	sous usa	iges con	stants					
Unité Gestion	Horizon		Avr			Mai			Juin			Juil			Aout			Sep			Oct			Nov	
Office Gestion	110112011	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max
	Hist	0,8	3,2	4,9	4,9	5,8	6,7	0,4	0,9	1,5	7,0	8,0	9,4	3,9	4,6	5,4	0,8	1,1	1,6	0,1	0,3	0,6	7,2	8,8	10,2
Sèvre aval	2030	2,2	3,1	4,4	4,0	6,6	9,0	0,9	1,4	1,9	5,5	10,1	14,1	3,5	6,2	8,3	0,7	2,2	3,6	0,2	0,5	1,1	8,6	10,1	13,1
Sevic avai	2050	2,3	3,2	4,4	3,2	7,0	11,4	0,5	1,4	2,7	4,4	10,7	17,1	3,2	7,6	11,6	1,3	2,8	4,2	0,1	0,8	1,8	5,7	11,6	14,7
	2070	1,9	3,6	6,1	4,1	8,2	12,4	0,9	2,3	3,5	6,8	14,4	20,3	5,9	11,5	15,9	2,6	4,7	7,2	0,2	1,6	3,2	9,9	13,7	16,3
	Hist	0,6	2,5	3,9	3,6	4,6	5,7	0,2	0,3	0,4	2,4	3,3	3,9	1,0	1,3	1,6	2,4	2,6	3,0	1,4	1,9	2,5	6,8	8,1	9,4
Sèvre moyenne 2	2030	1,7	2,5	3,7	3,4	5,3	7,3	0,2	0,4	0,6	2,7	4,6	6,1	0,8	1,8	2,4	2,4	4,2	6,0	1,7	3,3	5,8	7,8	9,8	13,2
	2050	1,5	2,5	3,2	2,6	5,8	9,5	0,1	0,4	0,9	1,8	4,8	8,6	1,1	2,2	3,6	2,4	5,1	7,3	2,0	4,3	6,0	6,0	11,5	14,7
	2070	1,4	2,7	4,3	3,2	6,8	10,3	0,2	0,8	1,3	3,2	7,1	10,6	2,0	3,8	5,3	4,4	7,8	10,3	2,7	7,1	11,1	10,4	14,0	17,1
	Hist	1,0	3,4	4,9	4,8	5,7	6,9	0,6	1,1	1,6	7,8	9,1	10,9	9,8	11,6	13,4	8,8	11,8	15,9	6,6	8,1	8,8	6,2	7,6	9,1
Sèvre moyenne 1	2030	2,4	3,3	4,7	4,2	6,2	8,4	1,3	1,7	2,7	5,9	10,9	15,6	7,9	13,8	18,2	10,8	15,4	19,2	8,6	12,6	18,2	7,1	9,4	13,0
•	2050	2,2	3,3	4,3	3,5	6,7	10,5	0,5	1,7	3,7	4,8	12,0	18,6	7,1	15,2	21,1	11,0	18,0	22,0	8,6	13,6	17,7	6,0	11,1	14,6
	2070	2,0	3,4	5,4	4,3	7,8	11,7	1,0	2,8	4,1	7,3	15,5	21,7	11,0	19,9	24,6	14,5	21,1	25,1	11,7	17,7	23,5	10,0	13,8	17,1
	Hist	1,0	3,2	4,5	8,1	9,1	11,4	2,7	3,6	4,8	12,1	13,9	15,8	12,8	15,3	17,9	7,4	10,3	14,0	6,3	6,9	7,6	5,6	6,8	8,7
Sèvre amont	2030	2,3	3,3	4,9	6,9	9,9	13,4	3,3	4,2	5,9	9,8	15,2	20,1	12,5	17,8	22,1	9,0	13,3	17,7	6,6	10,6	15,6	6,3	8,7	11,9
	2050	2,4	3,2	4,0	6,3	10,4	14,9	2,2	4,4	7,7	7,7	16,2	22,7	10,1	18,3	24,1	8,9	15,4	19,9	7,3	11,5	14,5	5,6	10,1	13,8
	2070	1,9	3,0	4,2	8,4	11,9	16,8	2,7	6,6	9,1	10,0	19,9	26,2	14,4	22,8	28,0	13,2	18,9	23,4	9,9	15,6	20,9	9,0	12,6	15,8
	Hist	4,5	8,0	9,8	7,5	8,9	10,1	7,2	9,9	12,0	7,4	8,3	9,2	6,1	7,1	8,3	1,6	2,5	3,1	2,2	2,6	3,0	8,9	10,4	11,9
Sanguèze	2030	6,1	8,4	10,5	7,0	10,0	12,9	8,8	11,7	15,6	6,7	9,6	12,6	6,2	8,3	10,5	2,6	4,0	4,9	2,4	3,6	5,2	9,1	10,5	12,6
	2050	5,5	7,8	10,8	5,5	9,9	14,0	4,7	10,9	15,8	4,0	9,0	12,7	4,9	8,2	10,2	3,9	4,7	5,4	2,9	4,1	6,0	5,9	11,5	13,9
	2070	4,5	8,6	11,9	6,4	11,2	15,4	6,4	13,7	20,9	4,3	10,7	15,1	6,3	9,7	11,3	4,6	5,6	6,6	2,6	5,3	7,3	10,5	13,0	15,7
	Hist	1,6	4,8	6,8	8,9	10,1	11,9	3,6	4,6	6,2	11,7	12,9	14,0	7,3	8,6	9,7	1,4	1,7	2,0	0,0	0,1	0,1	7,8	9,8	11,1
Maine	2030	3,9	5,2	6,8	7,4	11,4	16,2	5,4	6,5	8,5	10,5	15,2	19,0	8,3	10,6	12,5	1,6	3,3	5,4	0,0	0,1	0,3	8,1	10,2	12,8
	2050	4,3	5,3	6,9	7,8	12,3	17,8	3,2	6,6	10,6	9,6	15,7	20,9	9,4	11,6	13,3	2,8	4,3	6,2	0,1	0,2	0,4	6,2	11,7	14,8
	2070	2,8	5,7	9,3	8,6	13,4	18,5	4,7	10,0	13,9	11,6	18,5	22,8	11,2	13,9	15,7	3,7	5,6	8,1	0,1	0,3	0,6	9,9	13,7	15,9
	Hist 2030	1,9 3.6	5,1	7,4	5,2	6,7	8,1	3,8	5,1	7,0	7,2	7,7	9,3	7,2	8,8	10,2	2,6	3,7	4,6	0,7	0,8	1,0	7,0	8,2	10,2
Petite Maine		· 1	5,5	7,4	4,6	7,4	9,7	4,2	5,8	7,7	4,7	8,1	11,5	7,1	9,9	11,5	3,0	5,1	7,6	0,7	1,1	1,5	5,9	8,3	10,2
	2050	3,6	5,5	7,4	4,6	7,9	11,2	2,4	5,6	9,4	4,1	8,6	12,5	8,0	11,3	14,3	5,1	6,7	8,1	0,8	1,2	1,5 2 2 1	5,0	9,8	12,2
	2070	2,2	5,5	9,5	4,5	8,5	11,6	2,4	7,8	11,8	5,2	10,8	14,4	8,7	13,2	15,1	6,2	8,5	11,1	0,6	1,6	2,2	8,2	11,6	13,8

Rapport Phase 4 Quantification des volumes prélevables et programme d'actions

							Nombr	e de jou	rs par m	nois de f	franchiss	sement	de la val	eur de I	DOE pou	ır le scé	nario A	sous usa	iges cor	stants					
Hell Control	11.2.2.2		Avr			Mai			Juin			Juil			Aout			Sep			Oct			Nov	
Unité Gestion	Horizon	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max
	Hist	1,4	4,2	6,1	7,4	8,0	8,8	5,8	7,3	8,7	8,3	10,0	11,4	7,6	9,0	10,1	2,8	3,8	4,9	0,3	0,4	0,8	6,2	8,3	10,3
Grande Maine	2030	3,7	4,6	6,1	6,3	9,4	13,8	6,2	8,8	12,0	7,3	12,1	17,8	9,0	11,7	14,6	3,9	6,4	8,2	0,2	0,6	1,0	8,7	10,2	12,6
Grande Maine	2050	3,5	4,7	6,6	6,4	10,3	16,3	4,3	9,0	14,1	6,4	12,7	19,1	9,3	12,8	15,4	6,3	8,3	10,6	0,4	0,9	1,5	5,8	12,1	16,0
	2070	2,9	5,3	8,5	7,1	11,3	15,8	6,0	12,5	17,9	8,4	15,9	21,0	11,6	14,8	17,0	7,2	9,9	12,8	0,4	1,4	2,1	10,0	14,4	17,4
	Hist	3,3	6,0	7,9	10,2	12,1	13,4	1,8	2,4	3,0	1,2	1,5	1,8	0,4	0,7	0,9	0,6	0,7	0,8	0,0	0,0	0,0	8,2	9,7	12,1
Maina 2	2030	5,2	6,1	7,2	9,5	13,6	18,4	2,4	3,1	3,9	1,3	1,8	2,4	0,6	0,8	1,1	0,5	1,1	2,0	0,0	0,0	0,0	8,9	11,2	13,5
Moine 2	2050	5,1	6,3	7,8	9,6	14,2	20,1	1,4	3,1	4,8	0,8	2,1	2,9	0,6	1,0	1,6	1,1	1,4	2,0	0,0	0,0	0,0	6,4	12,8	15,6
	2070	5,4	7,3	9,2	10,9	15,4	20,5	1,8	4,1	5,7	1,5	3,0	4,6	0,9	1,5	2,2	1,2	1,9	3,0	0,0	0,1	0,1	11,7	15,1	17,8
	Hist	9,4	13,3	17,0	17,9	20,9	24,0	4,2	4,8	6,3	1,2	1,7	2,2	0,3	0,6	1,1	1,6	2,0	2,6	0,0	0,3	0,9	15,9	17,0	18,0
Moine 1	2030	11,3	12,9	13,8	18,2	21,1	25,4	4,6	5,0	5,8	1,0	1,5	2,2	0,3	0,4	0,5	1,8	2,2	3,2	0,0	0,0	0,0	17,1	18,9	19,6
Mome 1	2050	12,3	13,8	18,1	18,5	21,7	25,2	4,4	5,0	5,5	1,0	1,4	1,7	0,3	0,7	1,0	1,6	2,9	3,9	0,0	0,9	2,9	14,6	19,4	22,2
	2070	12,6	15,1	19,8	18,8	22,4	26,5	3,4	5,0	6,0	1,3	2,1	3,6	0,2	1,6	4,3	2,1	4,0	8,0	0,0	1,8	6,0	18,8	21,1	23,6
	Hist	4,5	7,0	9,1	8,4	11,0	13,2	9,7	12,6	16,7	15,3	17,2	19,9	18,3	20,1	21,7	13,7	15,6	17,9	8,1	10,7	13,3	5,0	7,7	9,2
Ouin	2030	6,0	7,3	8,7	8,6	12,4	17,2	10,1	14,2	17,8	14,0	19,0	22,7	19,1	23,2	25,4	13,2	18,8	22,7	11,8	15,3	20,0	7,1	9,8	13,1
Ouin	2050	5,3	7,2	10,6	8,7	13,0	18,8	7,1	14,3	20,4	12,3	19,8	26,0	18,4	23,9	27,3	16,1	21,0	23,7	12,1	16,6	21,8	6,2	11,6	15,2
	2070	5,6	8,0	11,2	10,2	14,5	19,1	8,5	17,2	23,6	13,6	22,5	27,5	19,1	25,7	28,2	19,5	23,2	25,0	15,1	20,1	26,0	9,9	13,6	16,6

Tableau 10: Nombre de jours par mois de franchissement de la valeur de DOE pour le scénario B plus favorable aux usages sous usages constants. Légende : Violet foncé : < 5 j. Violet moyen : < 10j & > 5j. Violet clair : < 15j & > 10j. Jaune clair : < 20j & > 15j. Jaune : > 20j.

							Nomb	re de jo	urs par i	mois de	franchis	sement	de la val	leur de [OOE pou	ır le scér	nario B s	ous usag	ges cons	tants					
Unité Gestion	Horizon		В			Mai			Juin			Juil			Aout			Sep			Oct			Nov	
Office Gestion	попідоп	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max
	Hist	0,0	0,0	0,0	0,0	0,7	1,2	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,1	0,0	0,0	0,0	0,1	0,3	0,6	3,6	5,0	6,9
Sèvre aval	2030	0,0	0,0	0,0	0,3	1,0	1,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,3	0,2	0,5	1,1	4,1	6,1	9,8
Sevic avai	2050	0,0	0,0	0,0	0,2	1,4	2,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,2	0,0	0,1	0,2	0,1	0,8	1,8	4,4	8,2	12,1
	2070	0,0	0,0	0,0	0,4	1,9	2,7	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,3	0,0	0,1	0,3	0,2	1,6	3,2	6,4	10,0	13,6
	Hist	0,0	0,0	0,0	0,0	0,2	0,5	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,1	0,0	0,0	0,1	1,4	1,9	2,5	3,4	4,7	5,9
Sèvre moyenne	2030	0,0	0,0	0,0	0,0	0,5	1,1	0,0	0,0	0,0	0,0	0,1	0,2	0,0	0,0	0,1	0,0	0,1	0,2	1,7	3,3	5,8	3,5	5,9	10,1
2	2050	0,0	0,0	0,0	0,0	0,6	1,3	0,0	0,0	0,0	0,0	0,2	0,3	0,0	0,1	0,2	0,0	0,0	0,1	2,0	4,3	6,0	4,2	8,0	11,7
	2070	0,0	0,0	0,0	0,2	0,7	1,1	0,0	0,0	0,1	0,2	0,4	0,5	0,0	0,2	0,4	0,1	0,1	0,2	2,7	7,1	11,1	6,1	10,1	13,6
	Hist	0,0	0,0	0,0	0,0	0,5	0,8	0,1	0,3	0,6	3,1	4,5	5,4	2,5	3,3	4,3	2,6	2,9	3,6	6,6	8,1	8,8	3,8	5,4	7,0
Sèvre moyenne	2030	0,0	0,0	0,0	0,3	0,8	1,4	0,1	0,4	0,6	3,5	6,2	8,8	2,3	4,3	5,4	2,9	5,0	6,9	8,6	12,6	18,2	4,5	7,2	11,5
1	2050	0,0	0,0	0,0	0,3	1,0	1,8	0,0	0,5	1,1	1,9	6,4	10,7	2,3	5,1	8,0	2,4	6,1	9,0	8,6	13,6	17,7	4,9	9,2	13,1
	2070	0,0	0,0	0,0	0,3	1,1	1,5	0,2	0,8	1,2	4,4	9,1	12,6	4,2	7,9	10,4	5,1	8,5	10,8	11,7	17,7	23,5	7,1	11,1	14,7
	Hist	0,1	0,6	0,9	4,4	5,4	6,7	0,8	1,5	1,9	7,7	9,0	11,0	7,2	8,1	9,3	7,0	9,4	12,8	6,3	6,9	7,6	5,6	6,8	8,7
Sèvre amont	2030	0,1	0,9	1,5	3,6	5,6	8,1	1,5	2,0	3,1	6,0	10,5	13,7	5,2	9,5	12,2	8,3	12,3	16,2	6,6	10,6	15,6	6,3	8,7	11,9
	2050	0,3	0,7	1,2	2,9	6,0	9,2	0,7	2,0	4,1	4,4	11,8	18,4	4,3	10,8	14,9	8,1	14,3	18,4	7,3	11,5	14,5	5,6	10,1	13,8
	2070	0,3	0,6	1,0	4,0	6,9	10,5	0,9	3,2	4,5	7,0	15,4	21,4	7,9	14,4	18,8	12,1	17,7	22,1	9,9	15,6	20,9	9,0	12,6	15,8
	Hist	1,5	4,6	6,7	7,5	8,9	10,1	6,0	8,7	10,5	7,4	8,3	9,2	6,1	7,1	8,3	1,6	2,5	3,1	2,2	2,6	3,0	8,1	9,6	11,0
Sanguèze	2030 2050	2,9 3,2	5,0	6,8	7,0 5,5	10,0 9,9	12,9 14,0	7,8 4,1	10,6 9,7	14,3	6,7 4,0	9,6	12,6	6,2 4,9	8,3 8,2	10,5 10,2	2,6	4,0	4,9 5,4	2,4 2,9	3,6	5,2 6,0	8,2	9,8	11,4 13,6
	2030	2,9	4,8 5,8	6,7 8,5		11,2	15,4	5,7	12,4	14,7 19,2	4,0 4,3	9,0	12,7	6,3	9,7	11,3	3,9 4,6	4,7 5,6	6,6	2,9	4,1 5,3	7,3	5,8 9,4	10,8	14,8
	Hist	0,0	0,5	1,1	6,4 4,0	5,2	6,1	1,0	1,7	3,2	10,3	11,2	15,1 12,1	7,3	8,6	9,7	1,4	1,7	2,0	0,0	0,1	0,1	6,3	7,6	9,1
	2030	0,2	0,7	1,6	3,8	6,4	8,9	2,4	2,9	3,6	8,8	13,2	16,6	8,3	10,6	12,5	1,6	3,3	5,4	0,0	0,1	0,3	6,1	8,0	10,5
Maine	2050	0,1	0,7	1,3	3,6	7,0	11,1	1,0	2,9	5,6	8,3	13,7	18,3	9,4	11,6	13,3	2,8	4,3	6,2	0,1	0,2	0,4	4,9	10,0	13,2
	2070	0,3	0,8	1,6	3,9	8,1	11,6	1,8	4,7	7,5	10,2	16,5	20,4	11,2	13,9	15,7	3,7	5,6	8,1	0,1	0,3	0,6	8,3	11,9	14,7
	Hist	1,0	3,4	5,3	5,2	6,7	8,1	3,8	5,1	7,0	7,2	7,7	9,3	7,2	8,8	10,2	2,6	3,7	4,6	0,7	0,8	1,0	7,0	8,2	10,2
	2030	1,9	3,8	5,2	4,6	7,4	9,7	4,2	5,8	7,7	4,7	8,1	11,5	7,1	9,9	11,5	3,0	5,1	7,6	0,7	1,1	1,5	5,9	8,3	10,2
Petite Maine	2050	2,8	3,8	4,9	4,6	7,9	11,2	2,4	5,6	9,4	4 <u>,1</u>	8,6	12,5	8,0	11,3	14,3	5,1	6,7	8,1	0,8	1,2	1,5	5,0	9,8	12,2
	2070	1,6	3,9	7,2	4,5	8,5	11,6	2,4	7,8	11,8	5,2	10,8	14,4	8,7	13,2	15,1	6,2	8,5	11,1	0,6	1,6	2,2	8,2	11,6	13,8

							Nomb	ore de jo	urs par ı	nois de	franchis	sement	de la val	leur de l	DOE pou	ır le scéi	nario B s	ous usa	ges cons	stants					
Unité Gestion	Horizon		В			Mai			Juin			Juil			Aout			Sep			Oct			Nov	
Office destion	ПОПІДОП	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max
	Hist	0,2	1,4	2,2	7,0	7,5	8,0	1,9	2,9	4,7	8,3	10,0	11,4	7,6	9,0	10,1	2,8	3,8	4,9	0,3	0,4	0,8	6,2	8,3	10,3
Grande Maine	2030	0,9	1,5	2,5	6,0	8,9	12,7	3,7	4,6	6,1	7,3	12,1	17,8	9,0	11,7	14,6	3,9	6,4	8,2	0,2	0,6	1,0	8,7	10,2	12,6
Granue Manie	2050	0,7	1,5	2,5	5,9	9,8	15,5	1,8	4,7	8,6	6,4	12,7	19,1	9,3	12,8	15,4	6,3	8,3	10,6	0,4	0,9	1,5	5,8	12,1	16,0
	2070	0,8	1,6	3,2	6,6	10,8	15,4	3,2	7,4	10,6	8,4	15,9	21,0	11,6	14,8	17,0	7,2	9,9	12,8	0,4	1,4	2,1	10,0	14,4	17,4
	Hist	0,1	0,3	0,5	3,6	4,5	5,4	0,0	0,1	0,1	0,2	0,3	0,4	0,3	0,5	0,7	0,6	0,7	0,8	0,0	0,0	0,0	5,5	7,2	9,2
Moine 2	2030	0,2	0,7	1,1	3,8	6,3	9,5	0,1	0,1	0,2	0,3	0,5	0,6	0,3	0,5	0,7	0,5	1,1	2,0	0,0	0,0	0,0	6,5	8,7	11,9
Wolfle 2	2050	0,0	0,5	0,8	3,6	7,3	12,7	0,1	0,1	0,2	0,2	0,6	1,0	0,3	0,7	1,2	1,1	1,4	2,0	0,0	0,0	0,0	5,4	10,6	14,2
	2070	0,3	0,7	1,4	4,5	8,7	12,7	0,1	0,2	0,5	0,5	0,9	1,4	0,7	1,2	1,8	1,2	1,9	3,0	0,0	0,1	0,1	9,3	12,7	15,8
	Hist	0,0	0,1	0,2	0,8	1,0	1,2	2,2	2,9	4,1	1,1	1,4	1,7	0,3	0,6	1,1	1,6	2,0	2,6	0,0	0,3	0,9	1,0	1,7	2,4
Moine 1	2030	0,1	0,1	0,2	0,9	1,2	1,8	2,7	3,2	3,9	0,9	1,2	1,6	0,3	0,4	0,5	1,8	2,2	3,2	0,0	0,0	0,0	1,0	1,9	3,7
Wolle 1	2050	0,0	0,1	0,2	0,9	1,4	2,3	2,2	3,0	3,6	0,8	1,2	1,5	0,3	0,7	1,0	1,6	2,9	3,9	0,0	0,9	2,9	0,7	3,1	4,3
	2070	0,0	0,2	0,6	1,2	2,2	3,2	1,9	3,1	4,0	0,9	1,7	3,2	0,2	1,6	4,3	2,1	4,0	8,0	0,0	1,8	6,0	1,8	4,1	9,5
	Hist	1,2	3,1	4,7	8,4	10,9	13,1	9,7	12,6	16,7	15,3	17,2	19,9	18,3	20,1	21,7	13,7	15,6	17,9	8,1	10,7	13,3	5,0	7,7	9,2
Ouin	2030	2,3	3,4	4,7	8,6	12,3	17,2	10,1	14,2	17,8	14,0	19,0	22,7	19,1	23,2	25,4	13,2	18,8	22,7	11,8	15,3	20,0	7,1	9,8	13,1
Ouiii	2050	2,1	3,5	5,3	8,6	12,9	18,7	7,1	14,3	20,4	12,3	19,8	26,0	18,4	23,9	27,3	16,1	21,0	23,7	12,1	16,6	21,8	6,2	11,6	15,2
	2070	2,4	3,9	6,1	10,1	14,4	19,0	8,5	17,2	23,6	13,6	22,5	27,5	19,1	25,7	28,2	19,5	23,2	25,0	15,1	20,1	26,0	9,9	13,6	16,6

À retenir :

Le changement climatique mènera à un nombre de jours moyens sous le DOE en augmentation, à une baisse du taux de satisfaction globale des usages, et à une augmentation des prélèvements, sauf dans certains cas lorsque l'on considère le scénario d'usages alternatif.

2.8 Méthodologie de calcul des DSA, DSAR et DCR

Pour le **calcul de ces trois débits réglementaires**, il a été effectué deux types de calculs. Ces propositions ont été discutées en Comité Technique.

Par la suite, une analyse est effectuée sur les différentes zones de restrictions qui peuvent contenir plusieurs UG. On s'est attachés à comparer ces différents débits seuils entre eux. De plus, on les a comparés aux valeurs précédemment utilisées sur le bassin versant (arrêté cadre « sécheresse » inter-préfectoral du 31 juillet 2023).

Sur ces bases, le COTECH a proposé de mettre à disposition des services de l'État les résultats de cette analyse sans proposer au comité pilotage d'arrêter des valeurs définitives.

2.8.1 Méthodologie n°1

Pour chaque station de référence, le calcul suivant a été réalisé :

Pour le DCR, on calcule : VCN_3j_10ans + Demande_AEP

Pour le DSAR, on calcule : 1,5*DCR

• Pour le DSA, on calcule : 2*DCR

Dans ces équations, le calcul de la demande pour l'alimentation en eau potable est basé sur les volumes moyens prélevés en aval de chaque station de référence entre 2008 et 2020 (volume prélevé journalier médian entre juin et septembre). Ce terme ne concerne que la station de la Sèvre Nantaise à Saint-Mesmin pour laquelle il représente 28 l/s.

Le terme VCN_3j_10ans correspond au débit minimal annuel moyen sur 3 jours consécutifs, avec une période de retour de 10 ans. Il se rapproche du pas de temps journalier considéré pour la gestion conjoncturelle et présente une période de retour traduisant des conditions sèches marquées (1 chance sur 10 d'être atteintes chaque année).

2.8.2 Méthodologie n°2

Au regard des travaux conduits par Claire Lang Delus (https://journals.openedition.org/cybergeo/24827), cette seconde méthodologie repose sur une approche hydrologique statistique visant à définir des débits de gestion crise progressif s'appuyant sur des débits caractéristiques d'étiage. Pour chaque station de référence, le calcul suivant a été réalisé :

- Pour le DCR, on calcule : VCN_3j_10ans + Demande_AEP (en aval de la station)
- Pour le DSAR, on calcule : VCN_3j_5ans + Demande_AEP + marges supplémentaires de gestion

• Pour le DSA, on calcule : VCN_10j_2ans + Demande_AEP + marges supplémentaires de gestion

Le terme « Demande_AEP » est identique à la méthode précédente. Les termes VCNxjours_yans correspondent à des définitions similaires à celle du terme VCN_3j_10ans de la méthode précédente. Les marges supplémentaires de gestion visent à donner suffisamment d'écarts entre les différents débits seuils DSA, DSAR et DCR afin de permettre une gestion progressive des mesures de limitations / restrictions afin d'éviter d'atteindre le niveau de « crise ».

Les VCN désinfluencés utilisés dans les valeurs proposées ont été arrondis :

- au multiple de 5 l/s pour les VCN < 100 l/s,
- au multiple de 10 l/s pour les valeurs de VCN comprises entre 100 et 900 l/s,
- au multiple de 100 l/s pour les valeurs de VCN > 900 l/s.

3 Proposition de gammes de valeurs théoriques de DOE et de VP pour la période de basses eaux

3.1 Valeurs de DOE calculées

Comme indiqué précédemment, nous nous servons de trois valeurs de débit environnemental (Qenv,min, Qenv,moy et Qenv,max) et du débit d'étiage désinfluencé sur la période 2008-2020 afin de proposer deux valeurs théoriques de DOE (Figure 12), une valeur favorisant les milieux, et une valeur favorisant les usages. Sur la plupart des Unités de Gestion du bassin, les valeurs de débits désinfluencés sont issues des débits de la Phase 2. Néanmoins, les paramètres de la partie amont de l'UG Moine 1 ont été modifiés (voir section 2.4.3). En effet, sur cette UG, les paramètres utilisés lors de la Phase 2, calés à partir de données anciennes (datant des années 70) et de qualité non vérifiées ne semblent pas donner des débits suffisants au remplissage des retenues de Ribou et Verdon. Pour le calcul des volumes prélevables, ces paramètres ont été remplacés par les paramètres calculés à partir de l'Ouin à Mauléon qui est le bassin jaugé le plus proche géographiquement et hydrologiquement des bassins amont du Trézon et de la Moine. Ces paramètres permettent un meilleur équilibre au niveau de la vidange et du remplissage des retenues de Ribou et Verdon. Les autres paramètres n'ont pas été modifiés car ils ont été calés sur des données récentes de débits, de bonne qualité et donnent de bons résultats en termes de débits. Les débits désinfluencés sont donc différents de ceux de la Phase 2 pour l'UG Moine 1, ils sont aussi légèrement différents sur les UG Moine 2, Sèvre moyenne 2 et Sèvre aval qui se trouvent en aval de l'UG Moine 1. Pour rappel, les valeurs de DOE sont égales au minimum entre le QMN5 désinfluencé et le débit environnemental minimal pour le scénario B (plus favorable aux usages), et la valeur de débit environnemental (moyen ou maximal) immédiatement inférieure au QMN5 désinfluencé, pour le scénario A (plus

favorable aux milieux). En fonction de l'unité de gestion considérée, la comparaison entre les QMN5 désinfluencés et les débits environnementaux adopte plusieurs typologies :

- Le long du cours principal de la Sèvre Nantaise, le QMN5 désinfluencé est supérieur aux débits environnementaux maximum et moyen d'avril à juillet. D'août à novembre, en revanche, le QMN5 désinfluencé est, en général, inférieur au débit environnemental moyen. L'unité de gestion Sèvre amont semble montrer plus de sensibilité que les trois autres UG du cours principal de la Sèvre Nantaise.
- Les unités de gestion amont (Sanguèze, Ouin, Moine 1, Grande Maine et Petite Maine) montrent des valeurs de QMN5 en général plus faibles que le débit environnemental moyen. Ces valeurs sont systématiquement inférieures au débit environnemental minimal entre juillet et octobre. Cela montre la forte sensibilité des milieux à l'étiage sur ces unités de gestion. Les unités de gestion Grande Maine et Moine 1 semblent un peu moins sensibles que les autres unités de gestion amont.
- Enfin, les unités de gestion Moine 2 et Maine semblent un peu moins sensibles que les unités de gestion amont bien que les valeurs de QMN5 restent généralement proches ou inférieures aux débits environnementaux minimaux de juillet à octobre.

Au global, il apparaît donc que les DOE n'atteignent que rarement les valeurs maximales de débits environnementaux. D'août à octobre, les DOE sont quasi systématiquement égaux aux valeurs de QMN5 désinfluencés (car ces dernières sont inférieures aux débits environnementaux minimaux). Sur le mois d'octobre, les DOE sont très inférieurs aux débits environnementaux minimaux car ces dernières ont été fixés via l'approche « connectivité », considérant que ce mois peut coïncider avec la reprise des écoulements. Pour autant, au moins sur 20 % des années et sur l'ensemble du bassin, les étiages peuvent également se poursuivre sur cette période.

La Figure 12 permet également de comparer les valeurs de QMN5 influencés aux débits environnementaux. En général, les QMN5 influencés sont inférieurs aux QMN5 désinfluencés d'avril à août et supérieurs de septembre à novembre. L'influence des prélèvements et rejets est importante sur l'unité de gestion Moine 2 (influence de Ribou et de la STEP des Cinq Ponts) et sur l'unité de gestion Sèvre moyenne 1 (prélèvements AEP).

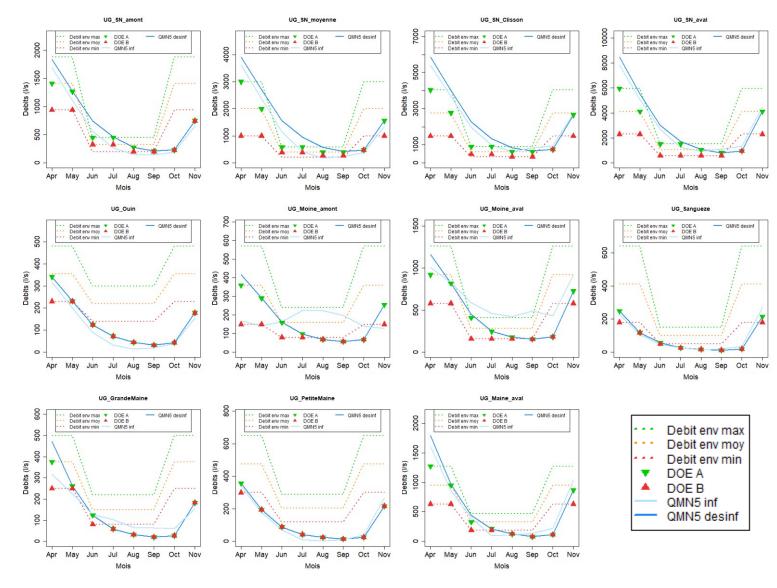


Figure 12: Calcul des Débits Objectifs d'Etiage sur chaque UG en fonction des QMN5 désinfluencés et des débits environnementaux.

Les valeurs des débits objectifs d'étiage présentées ci-dessus, sont indiquées dans le Tableau 11. Ces valeurs sont plus élevées sur le cours principal de la Sèvre Nantaise, ce qui est logique car ce sont pour ces UG que les débits sont en général les plus forts.

Tableau 11: Valeurs de DOE calculées correspondant à la valeur du scénario B, et à la valeur du scénario A. Les valeurs pour lesquelles le QMN5 désinfluencé est inférieur à la valeur de débit environnemental en question sont figurées en rouge.

UG	Scénario			Valeur	s mensuell	es de DOE ((l/s)		
UG	Scenario	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov
Sèvre	Α	1 410	1 268	450	450	274	208	230	747
amont	В	940	940	325	325	200	200	230	747
Sèvre	Α	3 000	2 000	580	580	390	390	477	1 559
moyenne 1	. В	1 000	1 000	390	390	270	270	477	1 000
Sèvre	Α	4 040	2 765	900	900	620	620	741	2 657
moyenne 2	В	1 490	1 490	485	485	340	340	741	1 490
Sèvre aval	Α	5 950	4 125	1 520	1 520	1 050	807	957	4 125
Sevie avai	В	2 300	2 300	580	580	580	580	957	2 300
Ouin	Α	341	232	125	73	45	33	44	179
Ouiii	В	230	230	125	73	45	33	44	179
Moine 1	Α	360	291	160	99	69	58	68	256
MOINE 1	В	150	150	80	80	69	58	68	150
Moine 2	Α	920	818	410	248	177	156	183	727
Monie 2	В	580	580	160	160	160	156	183	580
Sanguèze	Α	249	119	57	27	18	13	20	216
Sangueze	В	180	119	50	27	18	13	20	180
Grande	Α	375	262	123	59	32	20	27	183
Maine	В	250	250	80	59	32	20	27	183
Petite	Α	357	195	89	42	25	15	25	217
Maine	В	300	195	89	42	25	15	25	217
Maina	Α	1 270	950	330	212	127	81	116	868
Maine	В	630	630	190	190	127	81	116	630

3.2 Quantification des pertes / gains d'habitats

Afin d'évaluer les pertes / gains d'habitats (à partir de la SPU, Surface Pondérée Utile) selon le choix des DOE, il est possible de s'appuyer sur la méthode ESTIMHAB déployée dans le cadre de la phase 3 de l'étude HMUC.

Pour cela, les valeurs de DOE définies dans chaque scénario sont transposées au droit des stations de débits biologiques par ratio simple de surface de bassin versant.

A noter que cette méthode est d'autant moins fiable que la surface de bassin versant interceptée par les stations de débits biologiques est notablement différente de celle interceptée à l'exutoire de l'unité de gestion considérée (i.e. Ratio surfaces « BV exutoire UG / BV Station débit bio » très éloigné de 1).

Par cohérence avec les hypothèses de travail validées dans le cadre de la phase 3, la méthode ESTIMHAB n'est considérée que pour la période de très basses eaux, soit de juin à septembre.

Pour les hautes eaux (novembre à mars) et les périodes intermédiaires (avril à mai et octobre à novembre), les méthodologies retenues ne permettent pas de traduire quantitativement les pertes / gains d'habitats. Il peut toutefois être noté que le scénario B, moins favorable aux milieux naturels, conduirait à des débits moins importants dans les cours d'eau et donc moins propice à connecter les différents habitats au sein ou annexe au lit mineur.

Les figures 13 à 14 et les tableaux 12 et 13 permettent d'appréhender l'impact du choix du DOE, à partir de l'exemple de la station de la Sèvre Nantaise à Montravers situées sur l'UG Sèvre amont (concernée par des réservoirs biologiques du SAGE).

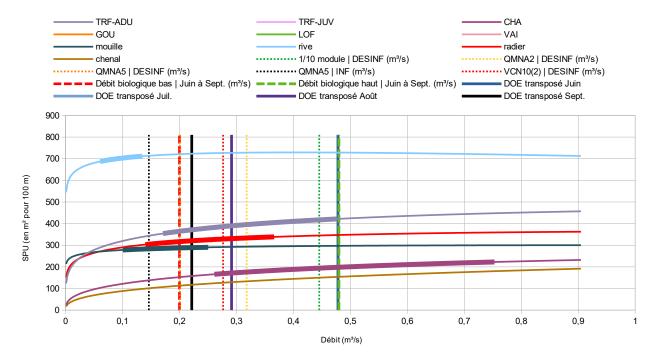


Figure 13: Courbes de SPU et DOE transposés | Station Sèvre Nantaise à Montravers – Scénario A (les valeurs de DOE transposés de juin et juillet sont identiques)

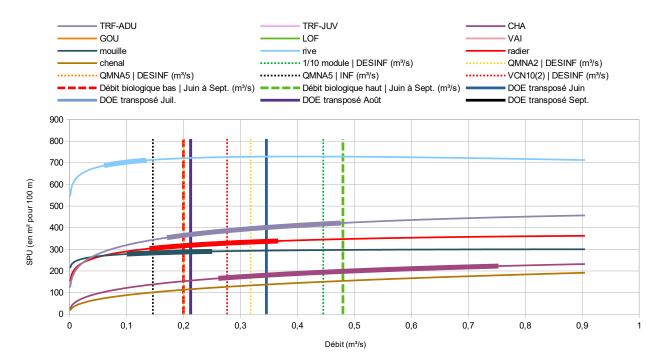


Figure 14: Courbes de SPU et DOE transposés | Station Sèvre Nantaise à Montravers – Scénario B (les valeurs de DOE transposés de juin et juillet ainsi que d'août et septembre sont identiques)

A partir de cet exemple, il est possible de noter que les pertes d'habitats par rapport à la valeur haute de débit biologique peuvent être notables avec le scénario A, notamment pour les espèces à enjeux.

Le scénario B, par construction moins favorable aux milieux, engendre des pertes encore plus significatives et ce sur plusieurs mois consécutifs alors que les pertes d'habitats maximales en lien avec le scénario A sont restreintes à un mois particulier. Par ailleurs, les DOE issus du scénario A suivent la baisse saisonnière des débits alors que les DOE attribués au scénario B conduisent à une saisonnalité moins prégnante et des valeurs de DOE plutôt regroupées dans la moitié inférieure de la plage de débits biologiques (dans les cas où le DOE n'est pas imposé par la valeur de débit quinquennal sec désinfluencé).

Les constats suivants peuvent être dressés aux autres stations de débits biologiques :

- Les gains / pertes exprimés en pourcentages peuvent correspondre, *in situ*, à des variations notables de surfaces d'habitats.
- Les gains d'habitats par rapport au débit biologique moyen, lorsqu'ils existent, sont plutôt attribuables au scénario A mais restent régulièrement cantonnés dans une fourchette comprise entre +1 % et +15 %. Le scénario B génère très peu de gains d'habitats par rapport au débit biologique moyen et principalement pour des espèces à moindre enjeux. Pour chacun des deux scénarios, les gains restent très variables selon les espèces

- Les scénarios A et B engendrent des pertes d'habitats régulièrement supérieures à 10 % (et jusqu'à plus de 50 %), notamment pour des espèces à enjeux.
- Le scénario B engendre régulièrement des pertes d'habitats supérieures au scénario A avec des écarts entre scénarios pouvant aller jusqu'à environ -25 % (station de la Moine à Saint-Crespin pour la guilde radier par exemple).
- Le scénario A présente généralement des DOE plus échelonnés au sein de la plage de débits biologiques quand le scénario B favorise le regroupement des valeurs de DOE autour du seuil bas du débit biologique sur la période de juin à septembre (dans les cas où le DOE n'est pas imposé par la valeur de débit quinquennal sec désinfluencé).

En synthèse, les tableaux 14 et 15 présentent, sous la forme de moyennes pour la période de juin à septembre, les pertes / gains d'habitats pour chacun des scénarios A et B au droit des 10 stations de débits biologiques ayant permis d'établir les débits environnementaux en phase 3.

A ce titre, ne sont pas intégrées à cette synthèse les stations de la Sèvre Nantaise à l'Élunière, du Trézon à l'Herboutière et de la Grande Maine à la Patricière. Pour rappel, les résultats présentés à la station de la Sèvre Nantaise à Angreviers sont donnés à titre indicatif car les conditions d'application d'Estimhab ne sont pas conformes.

La mise en forme retenue est la suivante :

Gain ((+) ou Perte (-) de	e SPU
Borne basse	Code couleur	Borne haute
40 %		> 40 %
30 %		40 %
20 %		30 %
10 %		20 %
0 %		10 %
-10 %		0 %
-20 %		-10 %
-30 %		-20 %
-40 %		-30 %
< -40 %		-40 %

Il convient de rappeler que cette approche moyennée est susceptible de ne pas rendre correctement compte des disparités mensuelles qui peuvent parfois être importantes. Par exemple la station la Sèvre Nantaise à Montravers présente un écart moyen de surface d'habitats de -6 % pour le Chabot (scénario B) par rapport au débit biologique moyen alors qu'une lecture mensuelle montre que ces pertes se chiffrent à 0 % en juin / juillet et -13 % en août et septembre.

L'analyse comparative montre que trois stations enregistrent des pertes moyennes d'habitats par rapport au débit biologique moyen accrues de plus de 10 % pour des espèces / guildes à enjeux pour le scénario B relativement au scénario A. Il s'agit des stations de la Sèvre Nantaise à Tiffauges (UG Sèvre moyenne 1), Sèvre Nantaise à Angreviers (UG Sèvre moyenne 2) et Moine à Saint-Crespin (UG Moine 2). Il convient d'ajouter que sur un mois donné, des écarts supérieurs à 10 % peuvent être identifiés entre les deux scénarios sur d'autres stations sans que la moyenne sur la période de juin à septembre ne dépasse toutefois ce seuil.

Les écarts moyens d'évolution d'habitats entre les scénarios A et B pour les autres unités de gestion sont généralement plus faibles. Pour les unités de gestion Sanguèze, Ouin, Petite Maine et Grande Maine cela tient en partie au fait que les valeurs de DOE pour chacun des deux scénarios sont régulièrement identiques du fait que l'hydrologie quinquennale sèche désinfluencée ne permet pas d'atteindre la plage de débit biologique et conduit donc à retenir une valeur DOE = QMN5 désinfluencée pour chacun des deux scénarios (voir tableau 11).

A noter que les UG Sèvre amont et Sèvre moyenne 1 sont largement concernées par des réservoirs biologiques et ont été définies en bonne partie comme secteur prioritaire d'intervention au titre des Contrats Territoriaux Eau 2021 - 2023 et 2024 - 2026 du bassin de la Sèvre Nantaise.

À retenir :

Les scénarios A et B conduisent à peu de gains d'habitats sur la période de juin à septembre. En revanche, ils engendrent plus régulièrement des pertes d'habitats, certaines pouvant représenter plusieurs dizaines de pourcents relativement au habitats obtenus avec le débit biologique moyen.

Le scénario B conduit à des pertes d'habitats généralement plus importantes, et sur une période plus étendue, que le scénario A, notamment pour les espèces à enjeux.

La scénario B apparaît plus défavorable aux milieux que le scénario A en particulier pour les unités de gestion Sèvre amont, Sèvre moyenne 1, Sèvre moyenne 2, Moine 1 et 2 (les deux premières étant concernées par des réservoirs biologiques).

Tableau 12: Gain (+) ou Perte (-) SPU par rapport au débit bio seuil haut | Station de la Sèvre Nantaise à Montravers (En gras les espèces à enjeux. En gris les valeurs données à titre indicatif.)

						Gain (+) ou F	erte (-) SPU par	rapport au <u>débit</u>	<u>bio. seuil haut</u>	
Station	UG concernée	Scenario	Mois	DOE transposé à la station bio (I/s)	Truite fario adulte	Chabot	Guilde Mouille	Guilde Rive	Guilde Radier	Guilde Chenal
			juin	478	0 %	0 %	0 %	0 %	0 %	0 %
Sèvre Nantaise	UG Sèvre	Α	juil.	478	0 %	0 %	0 %	0 %	0 %	0 %
à Montravers	amont	A	août	291	-8 %	-13 %	-2 %	0 %	-5 %	-16 %
			sept.	222	-12 %	-21 %	-3 %	-1 %	-8 %	-24 %
			juin	345	-5 %	-9 %	-1 %	0 %	-3 %	-11 %
Sèvre Nantaise	UG Sèvre	В	juil.	345	-5 %	-9 %	-1 %	0 %	-3 %	-11 %
à Montravers	amont	Б	août	213	-13 %	-22 %	-3 %	-1 %	-8 %	-25 %
			sept.	213	-13 %	-22 %	-3 %	-1 %	-8 %	-25 %

Tableau 13: Gain (+) ou Perte (-) <u>SPU par rapport au débit bio moyen</u> | Stations de la Sèvre Nantaise à Montravers (En gras les espèces à enjeux. En gris les valeurs données à titre indicatif.)

						Gain (+) ou	Perte (-) SPU pa	r rapport <u>au déb</u>	<u>it bio. moyen</u>	
Station	UG concernée	Scenario	Mois	DOE transposé à la station bio (l/s)	Truite fario adulte	Chabot	Guilde Mouille	Guilde Rive	Guilde Radier	Guilde Chenal
			juin	478	6 %	10 %	1 %	0 %	3 %	13 %
Sèvre Nantaise	UG Sèvre	Α	juil.	478	6 %	10 %	1 %	0 %	3 %	13 %
à Montravers	amont	A	août	291	-3 %	-5 %	-1 %	0 %	-2 %	-5 %
			sept.	222	-7 %	-12 %	-2 %	-1 %	-5 %	-14 %
			juin	345	0 %	0 %	0 %	0 %	0 %	1 %
Sèvre Nantaise	UG Sèvre	В	juil.	345	0 %	0 %	0 %	0 %	0 %	1 %
à Montravers	amont	D	août	213	-8 %	-13 %	-2 %	-1 %	-5 %	-15 %
			sept.	213	-8 %	-13 %	-2 %	-1 %	-5 %	-15 %

Tableau 14: Gain (+) ou Perte (-) SPU moyen par rapport au débit bio seuil haut (En gras les espèces à enjeux. En gris les valeurs données à titre indicatif.)

					Gai	n (+) ou Perte	(-) SPU n	noyen par	rapport	au débit	<u>bio. seu</u>	<u>il haut</u>	
Station	UG concernée	Surf. BV UG / Surf. BV Stat. débit bio	Scen.	Mois	Truite fario adulte	Chabot	Goujon	Loche Franche	Vairon	Guilde Mouille	Guilde Rive		Guilde Chenal
Sèvre Nantaise à Montravers	Sèvre amont	0,94	Α	Juin à sept.	-5 %	-9 %				-1 %	0 %	-3 %	-10 %
Ouin à la Basse Gelousière	Ouin	1,37	Α	Juin à sept.		-43 %	-18 %	-31 %	-23 %				
Sèvre Nantaise à Tiffauges	Sèvre moyenne 1	1,00	Α	Juin à sept.	-3 %	-5 %		-2 %		0 %	1 %		-6 %
Sèvre Nantaise à Angreviers	Sèvre moyenne 2	0,96	Α	Juin à sept.						0 %	0 %		-6 %
Moine à Cholet	Moine 1	0,76	Α	Juin à sept.		-25 %		-14 %		-3 %	0 %		-29 %
Moine à Saint-Crespin	Moine 2	1,05	Α	Juin à sept.		-14 %		-6 %		1 %	2 %		-16 %
Sanguèze à Mouzillon	Sanguèze	1,06	Α	Juin à sept.		-42 %	-6 %	-26 %	-15 %				
Grande Maine au Pont Léger	Grande Maine	0,84	Α	Juin à sept.		-37 %		-22 %		-5 %	-3 %		-40 %
Petite Maine à Fromage	Petite Maine	1,00	Α	Juin à sept.		-46 %		-28 %		-3 %	-1 %		-50 %
Maine à Aigrefeuille	Maine	1,05	Α	Juin à sept.		-25 %		-13 %		1 %	3 %		-28 %
Sèvre Nantaise à Montravers	Sèvre amont	0,94	В	Juin à sept.	-9 %	-15 %				-2 %	0 %	-6 %	-18 %
Ouin à la Basse Gelousière	Ouin	1,37	В	Juin à sept.		-43 %	-18 %	-31 %	-23 %				
Sèvre Nantaise à Tiffauges	Sèvre moyenne 1	1,00	В	Juin à sept.	-8 %	-15 %		-7 %		0 %	1 %		-17 %
Sèvre Nantaise à Angreviers	Sèvre moyenne 2	0,96	В	Juin à sept.						-1 %	0 %		-24 %
Moine à Cholet	Moine 1	0,76	В	Juin à sept.		-30 %		-17 %		-4 %	-1 %		-35 %
Moine à Saint-Crespin	Moine 2	1,05	В	Juin à sept.		-22 %		-10 %		1 %	4 %		-26 %
Sanguèze à Mouzillon	Sanguèze	1,06	В	Juin à sept.		-43 %	-6 %	-26 %	-15 %				
Grande Maine au Pont Léger	Grande Maine	0,84	В	Juin à sept.		-39 %		-24 %		-5 %	-3 %		-43 %
Petite Maine à Fromage	Petite Maine	1,00	В	Juin à sept.		-46 %		-28 %		-3 %	-1 %		-50 %
Maine à Aigrefeuille	Maine	1,05	В	Juin à sept.		-29 %		-15 %		1 %	3 %		-32 %

Tableau 15: Gain (+) ou Perte (-) **SPU moyen par rapport au débit bio moyen** (En gras les espèces à enjeux. En gris les valeurs données à titre indicatif.)

					G	ain (+) ou Pert	e (-) SPU	moyen paı	rappo	rt au <u>débi</u>	t bio. mc	<u>yen</u>	
Station	UG concernée	Surf. BV UG / Surf. BV Stat. débit bio	Scen.	Mois	Truite fario adulte	Chabot	Goujon	Loche Franche	Vairo n	Guilde Mouille	Guilde Rive		Guilde Chenal
Sèvre Nantaise à Montravers	Sèvre amont	0,94	Α	Juin à sept.	0 %	1 %				0 %	0 %	0 %	2 %
Ouin à la Basse Gelousière	Ouin	1,37	Α	Juin à sept.		-37 %	-15 %	-26 %	-20 %				
Sèvre Nantaise à Tiffauges	Sèvre moyenne 1	1,00	Α	Juin à sept.	3 %	6 %		2 %		0 %	-1 %		7 %
Sèvre Nantaise à Angreviers	Sèvre moyenne 2	0,96	Α	Juin à sept.						0 %	0 %		7 %
Moine à Cholet	Moine 1	0,76	Α	Juin à sept.		-16 %		-9 %		-2 %	-1 %		-18 %
Moine à Saint-Crespin	Moine 2	1,05	Α	Juin à sept.		-5 %		-3 %		0 %	1 %		-6 %
Sanguèze à Mouzillon	Sanguèze	1,06	Α	Juin à sept.		-35 %	-5 %	-21 %	-13 %				
Grande Maine au Pont Léger	Grande Maine	0,84	Α	Juin à sept.		-30 %		-18 %		-4 %	-3 %		-32 %
Petite Maine à Fromage	Petite Maine	1,00	Α	Juin à sept.		-41 %		-25 %		-3 %	-1 %		-44 %
Maine à Aigrefeuille	Maine	1,05	Α	Juin à sept.		-18 %		-9 %		0 %	1 %		-19 %
Sèvre Nantaise à Montravers	Sèvre amont	0,94	В	Juin à sept.	-4 %	-6 %				-1 %	0 %	-2 %	-7 %
Ouin à la Basse Gelousière	Ouin	1,37	В	Juin à sept.		-37 %	-15 %	-26 %	-20 %				
Sèvre Nantaise à Tiffauges	Sèvre moyenne 1	1,00	В	Juin à sept.	-3 %	-5 %		-2 %		0 %	0 %		-6 %
Sèvre Nantaise à Angreviers	Sèvre moyenne 2	0,96	В	Juin à sept.						-1 %	0 %		-13 %
Moine à Cholet	Moine 1	0,76	В	Juin à sept.		-22 %		-12 %		-3 %	-1 %		-25 %
Moine à Saint-Crespin	Moine 2	1,05	В	Juin à sept.		-15 %		-7 %		1 %	2 %		-17 %
Sanguèze à Mouzillon	Sanguèze	1,06	В	Juin à sept.		-36 %	-5 %	-22 %	-13 %				
Grande Maine au Pont Léger	Grande Maine	0,84	В	Juin à sept.		-33 %		-20 %		-4 %	-3 %		-35 %
Petite Maine à Fromage	Petite Maine	1,00	В	Juin à sept.		-41 %		-25 %		-3 %	-1 %		-44 %
Maine à Aigrefeuille	Maine	1,05	В	Juin à sept.		-22 %		-11 %		1 %	2 %		-24 %

3.3 Comparaison des DOE avec les débits d'étiage influencés

Une autre approche pour qualifier les potentiels pertes ou gains par rapport à la période passée récente (2008 - 2020) réside dans la comparaison entre les valeurs de DOE proposées dans chaque scénario avec le débit quinquennal sec influencé (QMN5_INF). Si le DOE est inférieur au débit quinquennal sec influencé, il y a alors un risque de voir à terme les débits d'étiage baisser comparativement à la période passée récente (du fait de l'augmentation des prélèvements). Pour mémoire, la phase 2 de l'étude HMUC a permis de mettre en exergue, à partir des données du SDAGE Loire Bretagne 2022 – 2027, qu'aucune masse d'eau du bassin versant de la Sèvre Nantaise n'est en bon état écologique et que toutes les masses d'eau « cours d'eau », hors Moine en aval de Ribou, Sèvre Nantaise en aval de sa confluence avec la Moine et Chaintreau, sont concernées par une pression significative « hydrologie ».

Les tableaux 16 et 17 présentent les résultats de cette approche. La mise en forme retenue est la suivante :

(DOE –	QMN5 INF) / QM	IN5 INF
Borne basse	Code couleur	Borne haute
80 %		> 80 %
60 %		80 %
40 %		60 %
20 %		40 %
0 %		20 %
-20 %		0 %
-40 %		-20 %
-60 %		-40 %
-80 %		-60 %
< -80 %		-80 %

Pour les deux scénarios, de juin à octobre, les unités de gestion Moine 1, Moine 2 et partiellement Sèvre moyenne 2 et Sèvre aval, sont concernées par des DOE inférieurs aux QMN5 influencés. Cela s'explique en partie par le fait que le soutien de débit de Ribou / Verdon sur les mois considérés participe à obtenir des débits influencés supérieurs aux débits désinfluencés ; or ces derniers servent de base pour la définition des valeurs de DOE.

Les cas où le DOE est inférieur au QMN5 influencé représentent 58 occurrences pour le scénario B contre 46 pour le scénario A ; les cas où le DOE est supérieur au QMN5 influencé représentent 30 occurrences pour le scénario B contre 42 pour le scénario A ce qui confirme que le scénario B est moins favorable aux milieux. Parmi ces occurrences, le scénario B conduit systématiquement à des écarts plus importants avec le QMN5 influencé que le scénario A, avec des réductions de débits régulièrement supérieures à 50 %.

Tableau 16: Comparaison des valeurs de DOE avec les valeurs de QMN5 influencé | Scénario A

Hydrologie (p 202		UG Sèvre amont	UG Sèvre moyenne 1	UG Sèvre moyenne 2	UG Sèvre aval	UG Ouin	UG Moine 1	UG Moine 2	UG Sanguèze	UG Grande Maine	UG Petite Maine	UG Maine
	avr.	1 410	3 000	4 040	5 950	341	360	920	249	375	357	1 270
	mai	1 268	2 000	2 765	4 125	232	291	818	119	262	195	950
DOE	juin	450	580	900	1 520	125	160	410	57	123	89	330
Scénario A	juil.	450	580	900	1 520	73	99	248	27	59	42	212
(l/s)	août	274	390	620	1 050	45		177	18	32	25	127
("")	sept.	208	390	620	807	33	58	156	13	20	15	81
	oct.	230	477	741	957	44		183	20	27	25	116
	nov.	747	1 559	2 657	4 125	179	256	727	216	183	217	868
	avr.	1 691	3 622	5 411	7 865	316	168	1 005	230	317	340	1 604
D. Clarke	mai	1 107	2 366	3 672	5 078	199	143	829	105	224	177	856
Débits	juin	564	1 161	1 978	2 696	90	164	590	49	126	71	398
mensuels quinquennaux	juil.	267	418	988	1 251	33	224	461	26	103	9	95
secs – INF	août	150	180	613	937	15		423	14	65	4	110
(l/s)	sept.	139	244	825	1 107	20	197	491	19	63	9	136
. ,	oct.	188	386	936	1 332	40	141	431	36	60	38	225
	nov.	656	1 353	2 729	4 497	155	129	915	269	156	268	1 037
	avr.	-281	-622	-1 371	-1 915	25	192	-85	19	58	17	-334
	mai	161	-366		-953	32		-11	13	37	18	
DOE	juin	-114	-581	-1 078	-1 176			-180	8	-3	17	94 -68
Scénario A –	juil.	183	162	-88	269	39	-125	-213	1	-44	33	116
QMN5_INF	août	124	210	7	113	30	-155		4	-33	21	17
(l/s)	sept.	70	146	-205	-301	13	-140	-335	-6	-42	6	116 17 -56
	oct.	42	91	-195	-375	3	-73	-248	-16	-33	-13	-109
	nov.	91	206	-71	-372	24	128	-189	-54	27	-52	-169

Tableau 17: Comparaison des valeurs de DOE avec les valeurs de QMN5 influencé | Scénario B

Hydrologie (p 202		UG Sèvre amont	UG Sèvre moyenne 1	UG Sèvre moyenne 2	UG Sèvre aval	UG Ouin	UG Moine 1	UG Moine 2	UG Sanguèze	UG Grande Maine	UG Petite Maine	UG Maine
	avr.	940	1 000	1 490	2 300	230	150	580	180	250	300	630
	mai	940	1 000	1 490	2 300	230	150	580	119	250	195	630
DOE	juin	325	390	485	580	125	80	160	50	80	89	190
DOE Scénario B	juil.	325	390	485	580	73	80	160	27	59	42	190
(l/s)	août	200	270	340	580	45	69	160	18	32	25	127
(,, 0)	sept.	200	270	340	580	33	58	156	13	20	15	81
	oct.	230	477	741	957	44	68	183	20	27	25	116
	nov.	747	1 000	1 490	2 300	179	150	580	180	183	217	630
	avr.	1 691	3 622	5 411	7 865	316		1 005	230	317	340	1 604
D4h:4-	mai	1 107	2 366		5 078	199	143	829	105	224	177	856
Débits mensuels	juin	564	1 161	1 978	2 696			590	49	126	71	398
quinquennaux	juil.	267	418	988	1 251	33		461	26	103	9	95
secs – INF	août	150	180	613	937	15		423	14	65	4	110
(l/s)	sept.	139	244	825	1 107	20	197	491	19	63	9	136
	oct.	188	386	936	1 332	40	141	431	36	60	38	225
	nov.	656	1 353	2 729	4 497	155	129	915	269	156	268	1 037
	avr.	-751	-2 622	-3 921	-5 565	-86	-18	-425	-50	-67	-40	-974
	mai	-167	-1 366		-5 505 -2 778	31	7	-425 -249	13	26	18	-226
505	juin	-239	-1 300 -771	-1 493	-2 116 -2 116			-249 -430	13	-46	17	-228
DOE Scénario B –	iuil.	58	-28	-503	-671	39	-144	-301	1	-44 -44	33	
QMN5_INF	août	50	90	-273	-357	30	-144 -155		4	-33	21	95 17
(l/s)		61	26	-485	-527	13	-133 -140	-203 -335	-6	-33 -42	6	-56
(,, 0)	sept.	42	91			3	-140 -73		6 -16	-42	-13	-109
		91		-195 1 220	-375 2 107			-248		-33 27		-109 -407
	nov.	91	-353	-1 239	-2 197	24	21	-335	-89	21	-52	-407

À retenir :

Relativement à la période passée récente (2008 - 2020), en situation quinquennale sèche sur la période de basses eaux, les scénarios A et B conduisent à de possibles « gains » de débits à l'exutoire des unités de gestion globalement moins importants, en intensité comme occurrence, que les possibles « baisses » de débits.

Le scénario B engendrerait une possible « baisse » des débits en cours d'eau plus marquée que pour le scénario A, que cela soit en termes d'écarts aux valeurs de débits quinquennaux sec influencés comme de nombre de mois concernés.

3.4 Possibilités de mise en place de solidarité amont aval

La mise en place de solidarité amont — aval telle que présentée dans la partie 2.4.1 n'est possible que sur les UG Sèvre moyenne 1, Sèvre moyenne 2 et Sèvre aval. Ailleurs, les VPM des unités de gestion amont ne sont pas suffisants par rapport aux VPM des unités de gestion se trouvant en aval.

Le Tableau 18 recense les transferts de VPM pour ces trois unités de gestion si l'on tient compte du principe de solidarité « amont – aval ». Par rapport aux VPM calculés sans ce principe, les VPM sont globalement plus faibles pour l'unité de gestion Sèvre moyenne 1 (cette UG transfère des VPM) et plus forts pour l'unité de gestion Sèvre aval (cette UG récupère des VPM). L'évolution des volumes totaux sur l'unité de gestion Sèvre moyenne 2 dépend du scénario considéré. Il existe en effet des disparités en fonction du choix initial du débit environnemental. Lorsque le scénario A est pris en compte, il existe des transferts de l'unité de gestion Sèvre moyenne 1 vers l'unité de gestion Sèvre moyenne 2 en juillet et août, et de l'unité Sèvre moyenne 2 vers l'unité de gestion Sèvre aval en avril et mai. Pour le scénario B, sur la période allant d'avril à juillet, la solidarité permet d'augmenter à la fois les VPM des unités Sèvre moyenne 2 et Sèvre aval à partir des volumes disponibles sur l'unité de gestion Sèvre moyenne 1. Enfin, l'unité de gestion Sèvre moyenne 2 contribue aux VPM de l'unité Sèvre aval en novembre.

Tableau 18: Transferts de VPM avec prise en compte de la solidarité amont-aval. Une valeur positive indique que l'UG correspondante « transfère » du VPM, une valeur négative indique que l'UG correspondante "récupère" du VPM

UG	Scénario	Différe	Différences de VPM (m³) entre valeur sans solidarité et valeur avec solidarité										
UG	Scenario	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov	Total			
Sèvre	Α	0	0	0	125 230	23 439	0	0	0	148 669			
moyenne 1	В	270 158	329 137	0	0	0	0	0	0	599 295			
Sèvre	Α	830 433	520 325	0	-125 230	-23 439	0	0	0	1 202 089			
moyenne 2	В	-37 297	-57 895	0	0	0	0	0	229 114	133 922			
Càura aval	Α	-830 434	-520 324	0	0	0	0	0	0	-1 350 758			
Sèvre aval	В	-232 860	-271 241	0	0	0	0	0	-229 114	-733 215			

Le Tableau 19 montre les transferts de VP entre UG. Les transferts sont exactement les mêmes que pour les VPM. Les orientations de la CLE du 21 mai 2024 indiquent la prise en compte de la solidarité amont-aval.

Tableau 19: Transferts de VP avec prise en compte de la solidarité amont-aval. Une valeur positive indique que l'UG correspondante « transfère » du VP, une valeur négative indique que l'UG correspondante "récupère" du VP

UG	Scénario	Di	Différences de VP (m³) entre valeur sans solidarité et valeur avec solidarité											
UG	Scenario	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov	Total				
Sèvre	Α	0	0	0	125 230	23 439	0	0	0	148 669				
moyenne 1	В	270 158	329 137	0	0	0	0	0	0	599 295				
Sèvre	Α	830 433	520 325	0	-125 230	0	0	0	0	1 225 528				
moyenne 2	В	-37 297	-57 895	0	0	0	0	0	229 114	133 922				
C }	Α	-830 434	-520 324	0	0	0	0	0	0	-1 350 758				
Sèvre aval	В	-232 860	-271 241	0	0	0	0	0	-229 114	-733 215				

Au stade du calcul des VPM en tenant compte de la solidarité, le scénario A permet à l'UG Sèvre moyenne 2 de recevoir 23 439 m³ de la part de l'UG Sèvre moyenne 1. Cette quantité n'est toutefois pas reprise au stade des VP car l'UG Sèvre moyenne 1 s'avère finalement déficitaire. Ce déficit transféré vers l'UG Sèvre moyenne 2 annule alors sa contribution dégagée au stade des VPM.

3.5 Valeurs de VPM calculées

Grâce aux valeurs de DOE précédemment déterminées, nous pouvons déterminer les volumes potentiellement mobilisables (VPM) correspondants que peut fournir le milieu pour chaque UG (Tableau 20). Dans ce tableau, la valeur de VPM_A (resp. B) correspond à une valeur de DOE_A (resp. B) et donc de débit environnemental illustrant ainsi différentes répartitions possibles de la ressource.

On observe que les valeurs de VPM sont plus importantes le long de la Sèvre Nantaise et sur l'unité de gestion Maine. L'unité de gestion Sèvre moyenne 1 dispose des valeurs de VPM les plus importantes sur l'ensemble de la période de basses eaux. Les autres unités de gestion montrent des valeurs de VPM très faibles, souvent nulles (du fait de valeurs de QMN5 désinfluencées inférieures aux débits environnementaux). Elles sont légèrement supérieures sur les UG de la Moine.

Comme le laissaient entrevoir les calculs de DOE, les valeurs de débits environnementaux maximaux mènent à des VPM très faibles, souvent nuls en dehors des unités de gestion Sèvre moyenne 1 et 2. Elles sont aussi très faibles de juillet à août et systématiquement nulles en octobre.

Tableau 20: Valeurs de VPM calculées, avec solidarité, par rapport aux valeurs de DOE : DOE_A et DOE_B du Tableau 11. Les valeurs de VPM négatives et nulles sont figurées en rouge. (c'est-à-dire quand le QMN5 est inférieur ou égal au débit environnemental ou du fait de la soustraction des VPM amont effectuée afin d'éviter le double compte)

ШС	Scénario	Valeurs mensuelles de VPM (m³)										
UG	Scenario	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov			
Sèvre	Α	1 111 968	0	766 195	29 730	0	0	0	0			
amont	В	2 330 208	879 319	1 090 195	364 530	198 737	21 773	0	0			
Sèvre	Α	1 257 120	1 870 327	1 786 925	827 477	450 638	99 274	0	0			
moyenne 1	В	4 664 492	3 335 718	1 955 405	1 126 803	596 748	388 541	0	1 449 446			
Sèvre	Α	894 802	949 849	899 424	336 020	145 842	-9 850	0	0			
moyenne 2	В	2 306 852	1 626 634	834 624	578 534	504 611	404 870	0	966 576			
Sèvre aval	Α	1 323 173	859 142	-11 923	-662 368	-534 341	-89 424	0	86 573			
Sevie avai	В	1 738 812	1 226 091	969 149	685 938	-25 445	-227 318	0	1 311 533			
Ouin	Α	0	0	0	0	0	0	0	0			
Ouiii	В	288 230	4 553	0	0	0	0	0	0			
Moine 1	Α	148 262	0	4 666	0	0	0	0	0			
Monie 1	В	692 582	378 726	212 026	49 550	0	0	0	275 011			
Moine 2	Α	472 781	0	104 458	0	0	0	0	0			
Wolfle 2	В	809 741	259 269	545 098	185 345	46 336	0	0	105 494			
Canquàza	Α	0	0	0	0	0	0	0	0			
Sanguèze	В	179 107	0	16 848	0	0	0	0	92 794			
Grande	Α	251 942	0	0	0	0	0	0	0			
Maine	В	575 942	31 337	112 493	0	0	0	0	0			
Petite	Α	0	0	0	0	0	0	0	0			
Maine	В	148 781	0	0	0	0	0	0	0			
Maina	Α	1 099 526	30 266	291 859	0	0	0	0	0			
Maine	В	2 285 626	856 017	542 246	57 853	0	0	0	616 118			

3.6 Influence du « soutien d'étiage » de Bultière sur les volumes prélevables théoriques de l'UG Maine

Le barrage de Bultière n'a pas pour vocation de faire du soutien d'étiage et l'arrêté préfectoral du 8 janvier 2024 régulant sa gestion est venu modifier les consignes de débits réservés en réduisant le débit réservé du barrage en période de très basses eaux et en y ajoutant une modalité de débit sortant = débit entrant dès lors que le débit entrant est inférieur à la consigne de débit réservé. Pour cette raison, le Tableau 21 montre les différences entre les VP sur l'UG Maine en prenant en compte ou non les rejets de Bultière et les volumes réglementés effectivement prélevés sur cette UG. Il montre que les volumes prélevables sur l'UG Maine sont inférieurs de juillet à octobre lorsque le soutien de débit de Bultière n'est pas pris en compte. Par ailleurs, la non prise en compte du soutien de débit de Bultière aggrave les déficits en juillet et août et crée un déficit en septembre.

La proposition du COTECH est de considérer l'absence de soutien d'étiage de Bultière pour calculer les volumes prélevables en lien avec les scénarios A et B.

Tableau 21: Différence entre volumes prélevables calculés pour l'unité de gestion Maine en tenant compte ou non du soutien de débit du barrage de Bultière et volumes réglementés moyens prélevés entre 2008 et 2020.

UG	Scénario	Différence entre VP théoriques et volumes réglementés moyens entre 2008 et 2020 (m³) Basses eaux										
		Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov	Total		
Avec soutien de	Α	1 077 279	-46 358	142 385	-254 248	-16 937	99 723	180 675	-173 600	1 008 919		
débit de Bultière	В	2 294 205	779 393	392 772	-196 395	-16 937	99 723	180 675	442 518	3 975 954		
Sans soutien de	Α	1 077 282	-46 357	142 385	-434 467	-198 172	-46 451	106 957	-173 601	427 576		
débit de Bultière	В	2 294 208	779 394	392 772	-376 614	-198 172	-46 451	106 957	442 517	3 394 611		

3.7 Valeurs de volumes prélevables (VP) théoriques calculées

En plus des VPM, le calcul des volumes prélevables réglementés nécessite de prendre en compte les volumes non réglementés prélevés et les volumes de rejets mensuels sur chaque unité de gestion. Nous les détaillons donc dans un premier temps.

Les volumes mensuels non réglementés regroupent les valeurs moyennes mensuelles (calculées entre 2008 et 2020) de prélèvement pour l'abreuvement, d'évaporation depuis les plans d'eau connectés hors irrigation et l'interception du ruissellement par les plans d'eau déconnectés et d'irrigation (Tableau 22). Pour les plans d'eau d'irrigation et les plans d'eau déconnectés, seule la part d'interception correspondant à de l'évaporation depuis le plan d'eau est prise en compte. Pour cela, un bilan annuel est effectué au niveau des plans d'eau pour estimer le volume évaporé par rapport au volume prélevé pour l'irrigation, issu de la BNPE. La formule utilisée est la suivante : V_{evap}=V_{intercept}-V_{irrig,BNPE}+V_{irrig,rerempl}. Avec V_{evap}, le volume annuel évaporé, V_{intercept} le volume annuel de ruissellement intercepté par le plan d'eau pour se remplir, V_{irrig,BNPE} le volume total annuel prélevé pour l'irrigation au niveau de ce point de prélèvement et V_{irrig,rerempl} le volume d'irrigation qui est prélevé directement dans le milieu en période de basses eaux du fait de la non disponibilité dans le plan d'eau (cas où les prélèvements sont supérieurs au stock constitué dans le plan d'eau). Ce volume annuel est ensuite réparti mois par mois en utilisant les ratios mensuels donnés par les plans d'eau de loisir déconnectés car ces derniers, uniquement soumis à l'évaporation, permettent d'avoir une idée de la répartition annuelle de l'impact de l'évaporation sur la ressource (via l'interception). Ces volumes sont importants sur les unités de gestion Sèvre amont, Sèvre moyenne 1 et Maine dans lesquelles les cheptels sont importants et les plans d'eau nombreux. Ils sont plus importants d'avril à juillet et plus faibles de septembre à novembre du fait d'une évaporation plus faible et d'une consommation moindre des cheptels sur ces mois.

Tableau 22: Valeurs mensuelles moyennes de volumes non réglementés prélevés entre 2008 et 2020 sur chaque UG. Ces volumes somment les prélèvements dans le milieu pour l'abreuvement, l'évaporation depuis les plans d'eau connectés et l'interception du ruissellement par les plans d'eau déconnectés et d'irrigation.

		Valeurs mensuelles de volumes non réglementés (m³)										
UG	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov	Total			
Sèvre amont	400 090	451 342	508 409	513 979	399 544	283 054	223 473	210 846	2 990 737			
Sèvre moyenne 1	288 463	283 641	340 618	349 259	262 539	190 652	131 168	133 692	1 980 032			
Sèvre moyenne 2	108 147	125 672	150 463	156 317	122 181	90 717	73 127	62 956	889 580			
Sèvre aval	36 865	44 145	46 684	44 205	34 028	24 650	18 071	23 813	272 461			
Ouin	70 278	80 925	94 500	93 890	72 993	51 872	44 267	40 515	549 240			
Moine 1	108 319	95 323	102 687	93 911	64 263	54 541	58 998	75 493	653 535			
Moine 2	167 997	187 240	202 368	191 892	143 808	122 624	119 416	122 741	1 258 086			
Sanguèze	141 435	127 568	136 955	127 278	97 045	72 517	76 780	79 880	859 458			
Grande Maine	85 480	85 913	102 688	103 770	66 537	51 331	47 727	49 029	592 475			
Petite Maine	120 952	120 120	131 924	120 983	77 799	60 112	89 493	108 528	829 911			
Maine	234 404	237 754	261 725	237 721	145 772	114 991	129 843	172 210	1 534 420			

Les rejets pris en compte regroupent les rejets de STEP, d'industrie, 50 % des pertes du réseau AEP et les restitutions des barrages de Bultière et Ribou (différences entre restitutions et entrées du barrage). Il s'agit, là encore, de moyennes mensuelles entre 2008 et 2020 (Tableau 23). Les unités de gestion Moine 2 et Maine disposent des valeurs de rejets les plus importantes dues aux rejets des barrages de Ribou et Bultière respectivement (ainsi que ceux de la STEP des Cinq Ponts pour l'unité Moine 2). Les rejets sont également importants sur les UG Sèvre moyenne 1, Sèvre aval et Grande Maine grâce, en particulier, aux contributions des STEP. Les rejets sont relativement stables sur l'ensemble de la période en dehors des restitutions de barrage plus importants en juillet et août. Les rejets sont supérieurs aux prélèvements non réglementés pour les unités de gestion les plus urbaines (Maine, Sèvre aval, Moine 2 et Grande Maine) et inférieurs pour les unités les plus rurales (Moine 1, Ouin et Sèvre amont).

Tableau 23: Valeurs mensuelles moyennes de volumes rejetés entre 2008 et 2020 sur chaque UG. Ces volumes somment les rejets des STEP, des industries dans le milieu, 50 % des pertes du réseau d'AEP et des rejets de barrages (hors débit réservé et avec prise en compte des rejets non prélevés issus des UG amont).

UG	Valeurs moyennes mensuelles de rejets (m3)											
UG	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov	Total			
Sèvre amont	45 606	44 669	41 041	36 287	32 910	33 939	41 388	51 575	327 415			
Sèvre moyenne 1	179 054	176 359	161 615	148 655	130 302	133 001	159 888	196 190	1 285 064			
Sèvre moyenne 2	109 048	103 776	95 482	83 306	79 469	77 521	95 724	120 814	765 140			
Sèvre aval	255 301	252 195	233 174	219 715	205 990	210 229	233 263	271 748	1 881 615			
Ouin	55 734	55 853	53 223	46 701	44 699	43 450	55 176	61 622	416 458			
Moine 1	40 796	44 462	38 739	34 285	30 495	31 576	39 110	49 780	309 243			
Moine 2	506 972	520 116	660 302	1 357 779	1 696 355	1 289 778	486 537	567 949	7 085 788			
Sanguèze	102 557	105 141	93 837	84 212	82 441	80 117	103 005	127 681	778 991			
Grande Maine	120 421	119 395	109 076	96 521	85 398	91 194	108 962	123 065	854 032			
Petite Maine	90 125	91 735	89 434	75 270	69 197	73 066	82 823	104 528	676 178			
Maine	276 626	274 771	249 126	230 015	213 716	218 878	267 034	305 837	2 036 003			

En retirant les prélèvements non réglementés et en ajoutant les rejets aux VPM, on obtient ainsi **les VP réglementés** présentés dans le Tableau 24. On observe que les VP montrent un schéma un peu différent de celui des VPM du fait de l'apport des rejets et des prélèvements non réglementés. Les VP les plus importants concernent les unités de gestion Sèvre moyenne 1, Moine 2 et Maine du fait, à la fois, de VPM plus importants (Sèvre moyenne 1) et des restitutions de barrages (Moine 2 et Maine). En revanche, les unités de gestion amont (Sèvre amont, Ouin et Moine 1), plus rurales, montrent une sensibilité plus importante du fait du déséquilibre entre prélèvements non réglementés et rejets ainsi que de VPM particulièrement faibles. Ce tableau montre certaines valeurs de volumes prélevables nulles même en tenant compte du débit environnemental le plus faible. En effet, sur les UG Sèvre amont, Ouin, Moine 1, Sanguèze et Petite Maine, les prélèvements réglementés seraient impossibles certains mois de la période de basses eaux. Ces périodes de prélèvements impossibles dépassent les trois mois pour ces unités même si le débit environnemental minimal est utilisé pour les calculs.

Tableau 24: Valeurs de VP réglementés calculées à partir des VPM du Tableau 20. Les valeurs de VP négatives sont figurées en rouge. * : Les totaux ne prennent pas en compte les valeurs négatives.

шс	Cafuania		Valeurs r	Valeurs mensuelles de volumes prélevables théoriques (m³) Basses eaux											
UG	Scénario	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov	Total*					
Sèvre	Α	757 484	-406 673	298 827	-447 961	-366 633	-249 115	-182 085	-159 271	1 056 311					
amont	В	1 975 724	472 646	622 827	-113 161	-167 896	-227 342	-182 085	-159 271	3 071 197					
Sèvre	Α	1 133 167	1 331 299	1 566 646	131 724	-76 526	-215 914	-153 365	-96 773	4 162 836					
moyenne 1	В	4 555 083	3 207 916	1 735 126	765 850	268 321	95 126	-153 365	1 352 673	11 980 095					
Sèvre	Α	895 703	927 954	844 443	263 009	26 604	-238 960	-130 768	-38 915	2 957 713					
moyenne 2	В	2 307 753	1 604 739	779 643	505 523	461 899	391 674	-130 768	1 024 434	7 075 665					
C } =	Α	1 502 731	1 044 766	131 449	-590 592	-376 984	-142 805	84 424	295 594	3 058 964					
Sèvre aval	В	1 957 248	1 411 715	1 129 369	815 567	131 912	-41 739	84 424	1 559 469	7 089 704					
Ouin	Α	-14 544	-25 072	-41 277	-47 189	-28 294	-8 422	10 909	21 108	32 017					
Ouin	В	273 686	-20 519	-41 277	-47 189	-28 294	-8 422	10 909	21 108	305 703					
Moine 1	Α	80 739	-50 860	-59 282	-59 625	-33 768	-22 965	-19 888	-25 713	80 739					
Mone 1	В	625 059	327 866	148 078	-10 075	-33 768	-22 965	-19 888	249 298	1 350 301					
Moine 2	Α	811 756	282 017	503 109	1 106 262	1 518 778	1 144 188	347 234	419 495	6 132 839					
Mone 2	В	1 148 716	592 146	1 003 031	1 341 157	1 565 114	1 144 188	347 234	550 702	7 692 288					
Sanguèze	Α	-38 878	-22 427	-43 118	-43 066	-14 604	7 600	26 224	47 801	81 625					
Sangueze	В	140 229	-22 427	-26 270	-43 066	-14 604	7 600	26 224	140 595	314 648					
Grande	Α	286 882	33 482	6 388	-7 249	18 861	39 863	61 235	74 037	520 748					
Maine	В	610 882	64 819	118 881	-7 249	18 861	39 863	61 235	74 037	988 578					
Petite	Α	-30 826	-28 385	-42 490	-45 713	-8 602	12 954	-6 671	-4 000	12 954					
Maine	В	117 955	-28 385	-42 490	-45 713	-8 602	12 954	-6 671	-4 000	130 909					
Maine	Α	1 110 922	38 898	236 770	-60 668	59 342	103 887	130 520	129 627	1 809 966					
iviairie	В	2 327 848	864 649	487 157	-2 815	59 342	103 887	130 520	745 745	4 719 148					
TOTAL BV	Α	6 579 384	3 658 416	3 587 632	1 500 995	1 623 585	1 308 492	660 546	987 662	19 906 712					
SN*	В	16 040 183	8 546 496	6 024 112	3 428 097	2 505 449	1 795 292	660 546	5 718 061	44 718 236					

Les résultats présentés dans le Tableau 24 correspondent aux résultats bruts de calculs. Avant de conférer une éventuelle portée réglementaire à ces valeurs, il conviendrait de procéder à des arrondis à 5 000 m³ ou 10 000 m³ par exemple.

Afin d'évaluer les volumes prélevables réglementés ainsi obtenus, ils sont comparés aux valeurs moyennes mensuelles de volumes réglementés prélevés entre 2008 et 2020 (Tableau 25). Ces valeurs réglementées comprennent les prélèvements pour l'AEP (en dehors de la part des prélèvements de Bultière et Ribou qui correspond au stock effectué dans les retenues en période de hautes eaux), pour l'industrie (hors AEP), pour l'irrigation depuis les cours d'eau et leur nappe d'accompagnement et pour le re-remplissage des plans d'eau d'irrigation. Du fait de l'irrigation, ces prélèvements sont particulièrement importants en juillet et août. Ils sont particulièrement importants sur les unités Moine 1, Grande Maine, Sèvre moyenne 1 (prélèvements AEP) et Maine (nombreux prélèvements pour l'irrigation).

Tableau 25: Valeurs mensuelles moyennes de volumes réglementés prélevés entre 2008 et 2020 sur chaque UG. Ces volumes somment les prélèvements dans le milieu pour l'AEP, les prélèvements pour l'industrie, pour l'irrigation en cours d'eau et le re-remplissage des plans d'eau d'irrigation.

UG	Valeurs moyennes mensuelles de volumes réglementés prélevés en basses eaux (m³)											
UG	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov	Total			
Sèvre amont	10 587	19 542	35 173	139 543	95 239	28 502	1 754	138 366	468 706			
Sèvre moyenne 1	172 028	201 237	249 724	538 303	469 942	254 671	157 583	302 511	2 345 999			
Sèvre moyenne 2	20 358	35 100	65 262	217 420	195 868	71 237	5 332	263 231	873 808			
Sèvre aval	56 194	76 149	64 812	87 899	63 051	42 633	46 481	64 399	501 618			
Ouin	40 677	46 388	46 659	67 843	54 940	37 336	31 739	56 775	382 357			
Moine 1	399 662	300 310	70 088	185 572	152 662	66 682	396 272	2 460 616	4 031 865			
Moine 2	21 057	57 400	55 312	210 647	222 604	102 431	11 295	106 964	787 710			
Sanguèze	1 074	5 126	1 649	9 251	13 657	7 131	475	44 735	83 098			
Grande Maine	86 181	391 192	186 670	247 910	179 811	80 202	5 343	2 655 154	3 832 462			
Petite Maine	9 837	12 614	19 360	102 474	79 991	45 481	9 137	184 577	463 471			
Maine	33 643	85 256	94 385	373 799	257 515	150 338	23 564	303 227	1 321 727			
Total BV SN	851 298	1 230 314	889 093	2 180 662	1 785 280	886 644	688 975	6 580 553	15 092 819			

Le Tableau 26 présente les **différences entre les volumes prélevables** du Tableau 24 **et les volumes réglementés moyens mensuels prélevés** entre 2008 et 2020.

Cette comparaison est donnée à **titre indicatif** car les volumes prélevés sont des éléments issus de la BNPE essentiellement et constituent des données conjoncturelles et non pas structurelles.

Pour juger de l'équilibre structurel de manière propre, les volumes prélevables seraient à comparer avec les autorisations administratives de prélèvements, mais ces données ne sont à ce jour pas disponibles dans le cadre de cette étude.

Il convient également de noter que cette comparaison s'appuie sur la période passée récente (2008 – 2020). Les nouvelles autorisations de prélèvements accordées depuis ne sont pas intégrées. Cette remarque concerne par exemple l'augmentation des prélèvements AEP en lien avec le captage des Martyrs à Saint-Laurent-sur-Sèvre ou encore la modification des consignes de débit réservé du barrage de Bultière. Pour mémoire, il est rappelé que la connaissance des volumes prélevés est entachée d'incertitudes (déclarations BNPE) tout comme celle des débits effectivement restitués par certains barrages (Ribou / Verdon essentiellement).

Enfin, il faut préciser que **les valeurs de VP** affichées ici **ne sont pas directement comparables aux valeurs obtenues lors de l'étude SAFEGE de 2012**. En effet :

- Les UG diffèrent entre ces deux études,
- Les périodes d'étude diffèrent,
- Une agrégation d'octobre à mars avait été réalisée pour l'étude de 2012,
- D'autres différences méthodologiques existent.

Au sein des unités Moine 2 et Sèvre aval, pour lesquelles les rejets sont les plus importants, les volumes prélevables sont systématiquement supérieurs aux volumes effectivement prélevés. A l'inverse, les unités Ouin, Moine 1 et Petite Maine montrent un déficit structurel global entre les VP calculés et les volumes effectivement prélevés entre 2008 et 2020. Seul le mois d'avril montre un bilan positif sur ces unités de gestion. Pour l'unité Moine 1, les déficits sont principalement dus aux prélèvements AEP de Ribou. Entre ces deux extrêmes, les unités de gestion sont globalement bénéficiaires du point de vue des différences entre les VP calculés et les volumes effectivement prélevés mais périodiquement déficitaires. Pour les unités de gestion Sèvre moyenne 2 et Maine, les déficits existent sur un ou deux mois entre juillet, août et septembre. Les périodes de déficits sont plus importantes pour les unités de gestion Sèvre amont, Sèvre moyenne 1 (d'août à novembre), Grande Maine (de mai à août et en novembre) et Sanguèze (d'avril à août).

Tableau 26: Différence entre les volumes prélevables fixés à partir des différentes valeurs de volumes potentiellement mobilisables et les volumes réglementés effectivement prélevés en moyenne sur la période 2008-2020. Les valeurs déficitaires de plus de 50 000 m³ par mois sont affichées en rouge, les valeurs déficitaires de moins de 50 000 m³ par mois sont affichées en orange, les valeurs bénéficiaires de moins de 50 000 m³ sont affichées en vert clair et celles qui montrent un bénéfice de plus de 50 000 m³ sont affichées en vert foncé.

UG	Scénario	Différence	entre VP th	éoriques et	volumes ré	glementés r	noyens enti	e 2008 et 2	2020 (m³) Ba	asses eaux
UG	Scenario	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov	Total
Sèvre	Α	746 897	-19 542	263 654	-139 543	-95 239	-28 502	-1 754	-138 366	587 605
amont	В	1 965 137	453 104	587 654	-139 543	-95 239	-28 502	-1 754	-138 366	2 602 491
Sèvre	Α	961 139	1 130 062	1 316 922	-406 579	-469 942	-254 671	-157 583	-302 511	1 816 837
moyenne 1	В	4 383 055	3 006 679	1 485 402	227 547	-201 621	-159 545	-157 583	1 050 162	9 634 096
Sèvre	Α	875 345	892 854	779 181	45 589	-169 264	-71 237	-5 332	-263 231	2 083 905
moyenne 2	В	2 287 395	1 569 639	714 381	288 103	266 031	320 437	-5 332	761 203	6 201 857
Sèvre aval	Α	1 446 537	968 617	66 637	-87 899	-63 051	-42 633	37 943	231 195	2 557 346
Sevie avai	В	1 901 054	1 335 566	1 064 557	727 668	68 861	-42 633	37 943	1 495 070	6 588 086
Ouin	Α	-40 677	-46 388	-46 659	-67 843	-54 940	-37 336	-20 830	-35 667	-350 340
Ouiii	В	233 009	-46 388	-46 659	-67 843	-54 940	-37 336	-20 830	-35 667	-76 654
Moine 1	Α	-318 923	-300 310	-70 088	-185 572	-152 662	-66 682	-396 272	-2 460 616	-3 951 126
MOINE I	В	225 397	27 556	77 990	-185 572	-152 662	-66 682	-396 272	-2 211 318	-2 681 564
Moine 2	Α	790 699	224 617	447 797	895 615	1 296 174	1 041 757	335 939	312 531	5 345 129
WOITIE Z	В	1 127 659	534 746	947 719	1 130 510	1 342 510	1 041 757	335 939	443 738	6 904 578
Sanguèze	Α	-1 074	-5 126	-1 649	-9 251	-13 657	469	25 749	3 066	-1 473
Jangueze	В	139 155	-5 126	-1 649	-9 251	-13 657	469	25 749	95 860	231 550
Grande	Α	200 701	-357 710	-180 282	-247 910	-160 950	-40 339	55 892	-2 581 117	-3 311 714
Maine	В	524 701	-326 373	-67 789	-247 910	-160 950	-40 339	55 892	-2 581 117	-2 843 884
Petite	Α	-9 837	-12 614	-19 360	-102 474	-79 991	-32 527	-9 137	-184 577	-450 517
Maine	В	108 118	-12 614	-19 360	-102 474	-79 991	-32 527	-9 137	-184 577	-332 562
Maine	Α	1 077 279	-46 358	142 385	-373 799	-198 173	-46 451	106 956	-173 600	488 239
Manie	В	2 294 205	779 393	392 772	-373 799	-198 173	-46 451	106 956	442 518	3 397 421
TOTAL BV	Α	5 728 086	2 428 102	2 698 539	-679 667	-161 695	421 848	-28 429	-5 592 891	4 813 893
SN	В	15 188 885	7 316 182	5 135 019	1 247 435	720 169	908 648	-28 429	-862 492	29 625 417

Les figures 15 à 18 permettent de visualiser, par unité de gestion, par scénario et par sous-période les résultats obtenus, en mettant en avant le nombre de mois pour lesquels les VP obtenus se situent sous les volumes prélevés moyens entre 2008 et 2020.

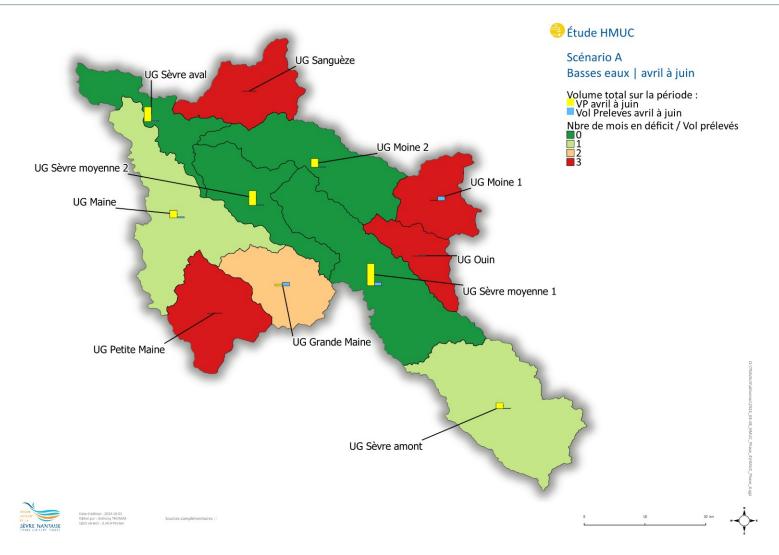


Figure 15: Comparaison des volumes prélevables aux volumes moyens prélevés de 2008 à 2020 sur la période d'avril à juin | Scénario A

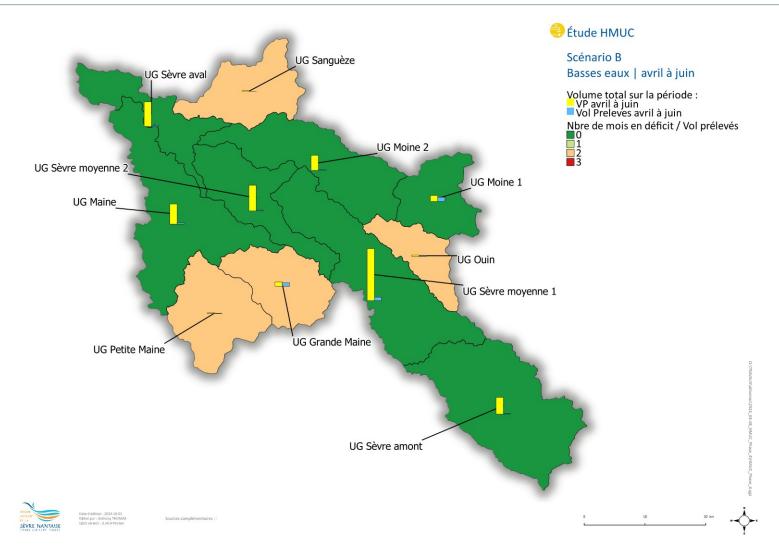


Figure 16: Comparaison des volumes prélevables aux volumes moyens prélevés de 2008 à 2020 sur la période d'avril à juin | Scénario B

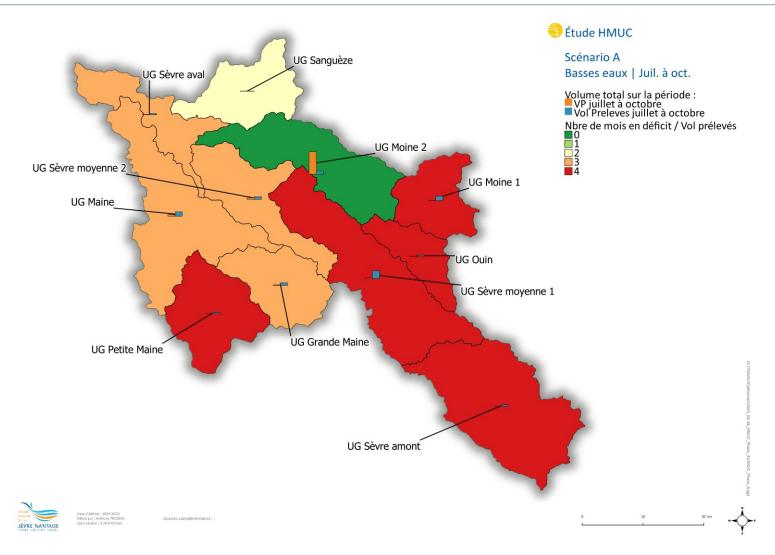


Figure 17: Comparaison des volumes prélevables aux volumes moyens prélevés de 2008 à 2020 sur la période de juillet à octobre | Scénario A

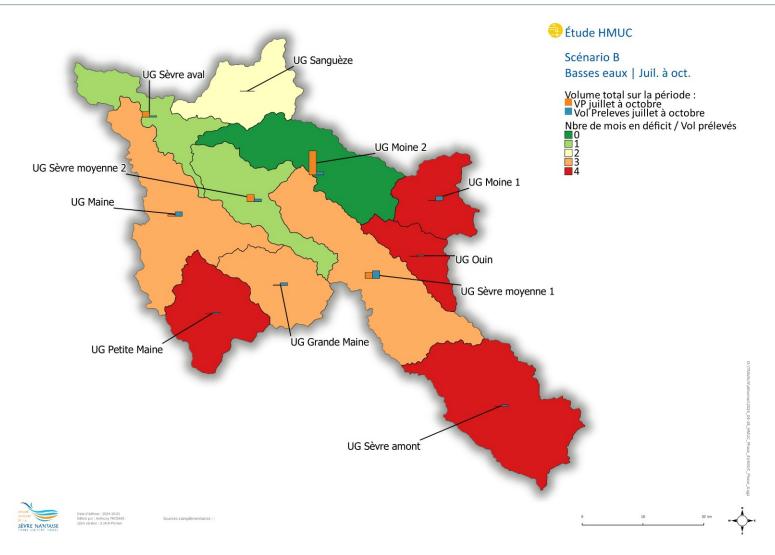


Figure 18: Comparaison des volumes prélevables aux volumes moyens prélevés de 2008 à 2020 sur la période de juillet à octobre | Scénario B

À retenir :

Différentes gammes de valeurs de DOE, VPM et VP ont été présentées ci-dessus. Il s'agit de gammes de valeurs théoriques qui avaient pour vocation à être discutées en concertation avec le Comité Technique et le Comité de Pilotage. Par ailleurs, les impacts de différents choix, tels que la prise en compte de la solidarité amont-aval, ainsi que la non-prise en compte du soutien de débit de Bultière, ont été illustrés.

Les valeurs finalement obtenues laissent apparaître des UG potentiellement en déficit en termes de VP, par rapport à des prélèvements moyens entre 2008 et 2020, telles que l'Ouin, la Moine 1 ou la Grande Maine.

4 Proposition de gammes de valeurs de volumes potentiellement disponibles théoriques pour la période de hautes eaux

4.1 Éléments de cadrage

Le Tableau 27 présente les résultats de l'analyse des taux de prélèvements sur les débits de crue.

Les résultats sont relativement homogènes entre unités de gestion et montrent que l'impact des prélèvements génère une baisse de l'ordre de 7 % (pour un taux de prélèvement de 20 % du module) à 20 % (pour un taux de prélèvement de 60 % du module) du débit journalier dépassé 10 % du temps en hydrologie désinfluencée sur la période 2008 - 2020. Ces calculs illustrent que plus la tranche de prélèvement considérée est importante, plus l'impact sur les petites crues est conséquent. Or ces petites crues méritent d'être conservées car elles participent activement au renouvellement des habitats aquatiques et des annexes hydrauliques.

Par ailleurs, 4 unités de gestion présentent un régime contrasté et 7 unités de gestion ont un régime non contrasté. Pour ces dernières, le SDAGE Loire Bretagne recommande de ne pas retenir un débit de prélèvement hors basses eaux supérieur à 40 % du module.

Tableau 27: Impact sur les débits de crue en fonction du débit de prélèvement en hautes eaux

Hydrologie dé (période 200		UG Sèvre amont	UG Sèvre moyenne 1	UG Sèvre moyenne 2	UG Sèvre aval	UG Ouin	UG Moine 1	UG Moine 2	UG Sanguèze	UG Grande Maine	UG Petite Maine	UG Maine
Module M (Vs)		4 241	8 797	13 762	22 159	971	1132	3 161	1 239	1 477	1579	5 946
Débit annuel quin (l/s)	quennal sec	2 872	5 989	9 5 3 8	15 341	677	806	2 249	896	969	997	3 951
	janv.	9 640	20 368	32 569	54 984	2 2 4 6	2 674	7 5 9 6	3 300	3 884	4 139	15 894
Débita magnayala	févr.	9 300	19 606	31 133	50 871	2 0 3 0	2 5 3 4	7 337	2 786	3 388	3 6 1 8	13 812
Débits mensuels moyens (l/s)	mars	6 3 3 8	13 648	21 354	33 523	1 439	1731	4 982	1578	2 255	2 105	8 658
inoyens (vs)	nov.	5 280	10 244	16 014	27 046		1 307	3 490	1 969	1866	2 388	7 841
	déc.	9 1 5 9	18 587	29 967	51 555	2 187	2 5 4 5	7 0 1 6	3 4 4 9	3 693	4 245	15 352
Débit moyen men annuel maximal (l		9 640	20 368	32 569	54 984	2 246	2 674	7 596	3 449	3 884	4 2 4 5	15 894
Rapport « Débit n mensuel inter-anr maximal / Module	nuél	2,27	2,32	2,37	2,48	2,31	2,36	2,40	2,78	2,63	2,69	2,67
Type de régime		Non contrasté	Non contrasté	Non contrasté	Non contrasté	Non contrasté	Non contrasté	Non contrasté	Contrasté	Contrasté	Contrasté	Contrasté
Débits maximum des	0,2 x module	848	1 759	2 752	4 432	194	226	632	248	295	316	1 189
prélèvements réglementés préconisés par	0,4 x module	1 696	3 5 1 9	5 505	8 864	388	453	1 264	496	591	632	2 378
le SDAGE - dispo 7D-5 (I/s)	0,6 x module	-	-	-	-	-	_	-	743	886	947	3 5 6 8
Débit journalier de du temps (l/s)	•	11 139	23 084	37 240	62 155	2 642	3144	8 931	3 6 1 6	4 283	4 785	17 440
Ratio entre le déb dépassé 10 % du module		2,63	2,62	2,71	2,80	2,72	2,78	2,83	2,92	2,90	3,03	2,93
Part d'un prélèver du module sur le journalier dépass temps	débit	7,6 %	7,6 %	7,4 %	7,1 %	7,3 %	7,2 %	7,1 %	6,9 %	6,9 %	6,6 %	6,8 %
Part d'un prélèver du module sur le journalier dépass temps	débit	15,2 %	15,2 %	14,8 %	14,3 %	14,7 %	14,4 %	14,2 %	13,7 %	13,8 %	13,2 %	13,6 %
Part d'un prélèver du module sur le journalier dépass temps	débit	-	-	-	-	-	-	-	20,6 %	20,7 %	19,8 %	20,5 %

4.2 Résultats obtenus

Les volumes prélevables calculés pour la période de hautes eaux en utilisant un bilan journalier sont recensés dans le Tableau 28. Selon l'UG, le mode de gestion et la part du module choisie pour le débit plancher, le volume prélevable total varie entre 1 et 12 millions de m³, sauf pour la Sèvre aval qui ne dispose pas de volume prélevable avec les hypothèses retenues. Les volumes sont bien répartis sur les mois de décembre à mars et un peu plus faibles en novembre. Les volumes sont importants pour les unités de gestion Sèvre amont, Sèvre moyenne 1 et Maine. Ils sont, en revanche, plus faibles sur les unités de gestion Ouin et Moine 1.

Tableau 28: Valeurs de Volumes Prélevables avec hypothèse de gestion coordonnée (GC) ou individuelle (GI) pour les scénarios A et B en hautes eaux calculées pour chaque mois de la période et chaque unité de gestion à partir d'un bilan journalier des débits entre 2008 et 2020.

		V	aleurs mensu	elles de VPD th	néoriques (m³)	Hautes eaux	
UG	Scénarios	Jan	Fév	Mar	Nov	Déc	Total
	A GI	1 482 546	1 138 686	896 292	541 158	1 155 597	5 214 279
UG Sèvre	A GC	1 561 121	1 226 655	972 955	593 658	1 216 951	5 571 340
amont	B GI	2 965 093	2 277 372	1 792 585	1 082 315	2 311 194	10 428 559
	B GC	3 283 856	2 618 547	2 142 186	1 314 491	2 550 384	11 909 464
	A GI	1 362 654	1 074 553	879 992	482 356	990 141	4 789 696
UG Sèvre	A GC	1 414 674	1 180 948	971 714	484 516	993 490	5 045 342
moyenne 1	B GI	2 725 308	2 149 106	1 759 984	964 712	1 980 283	9 579 393
	B GC	2 919 365	2 486 531	2 123 174	1 090 588	2 104 960	10 724 618
	A GI	625 304	605 806	542 651	276 944	489 487	2 540 192
UG Sèvre	A GC	695 701	582 544	555 150	394 915	599 186	2 827 496
moyenne 2	B GI	1 250 608	1 211 613	1 085 302	553 888	978 974	5 080 385
	B GC	1 465 718	1 274 245	1 090 469	790 514	1 283 449	5 904 395
	A GI	544 990	483 362	191 993	271 239	532 654	2 024 238
UG Sèvre	A GC	493 325	414 051	453 171	243 643	466 503	2 070 693
aval	B GI	1 089 981	966 724	383 986	542 477	1 065 307	4 048 475
	B GC	909 819	968 150	876 695	629 970	856 094	4 240 728
	A GI	323 831	254 162	199 975	134 177	263 193	1 175 338
UG Ouin	A GC	337 801	271 024	215 421	148 901	275 362	1 248 509
OG Ouiii	B GI	647 662	508 324	399 951	268 354	526 387	2 350 678
	B GC	711 787	578 112	473 924	331 162	574 572	2 669 557
	A GI	385 248	319 033	228 741	162 526	299 470	1 395 018
UG Moine 1	A GC	403 026	334 620	247 377	174 597	318 867	1 478 487
OG Mone 1	B GI	770 496	638 067	457 482	325 053	598 940	2 790 038
	B GC	843 831	705 065	552 883	383 872	669 814	3 155 465
	A GI	631 500	559 067	380 468	287 027	515 609	2 373 671
UG Moine 2	A GC	655 230	585 994	415 979	313 563	538 693	2 509 459
OG MOINE 2	B GI	1 263 000	1 118 134	760 935	574 055	1 031 218	4 747 342
	B GC	1 384 323	1 241 429	944 720	691 222	1 147 541	5 409 235

UG	Scénarios	V	/aleurs mensu	elles de VPD th	néoriques (m³)	Hautes eaux	
UG	Scenarios	Jan	Fév	Mar	Nov	Déc	Total
	A GI	411 657	330 972	176 189	233 821	355 671	1 508 310
UG	A GC	429 980	346 177	194 684	249 056	365 089	1 584 986
Sanguèze	B GI	823 314	661 944	352 378	467 642	711 343	3 016 621
	B GC	898 606	728 712	437 538	528 935	757 826	3 351 617
	A GI	500 737	378 989	272 951	212 077	406 481	1 771 235
UG Grande	A GC	522 828	397 073	313 094	229 028	424 915	1 886 938
Maine	B GI	1 001 474	757 979	545 902	424 154	812 962	3 542 471
	B GC	1 085 584	851 687	680 072	510 234	890 855	4 018 432
	A GI	583 458	415 556	258 149	321 112	455 433	2 033 708
UG Petite	A GC	601 486	446 046	301 924	340 051	468 116	2 157 623
Maine	B GI	1 166 916	831 113	516 297	642 223	910 866	4 067 415
	B GC	1 225 713	944 022	680 189	726 807	960 429	4 537 160
	A GI	1 041 927	802 022	567 529	494 305	869 018	3 774 801
UG Maine	A GC	1 069 819	854 359	602 468	541 484	907 364	3 975 494
OG Mairie	B GI	2 083 854	1 604 043	1 135 057	988 610	1 738 036	7 549 600
	B GC	2 203 200	1 816 006	1 351 486	1 131 336	1 861 542	8 363 570
	A GI	7 893 852	6 362 208	4 594 930	3 416 742	6 332 754	28 600 486
TOTAL BV	A GC	8 184 991	6 639 491	5 243 937	3 713 412	6 574 536	30 356 367
SN	B GI	15 787 706	12 724 419	9 189 859	6 833 483	12 665 510	57 200 977
	B GC	16 931 802	14 212 506	11 353 336	8 129 131	13 657 466	64 284 241

Les résultats présentés dans le Tableau 28 correspondent aux résultats bruts de calculs. Avant de conférer une éventuelle portée réglementaire à ces valeurs, il conviendrait de procéder à des arrondis à 5 000 m³ ou 10 000 m³ par exemple.

Afin d'évaluer les volumes prélevables en hautes eaux réglementés ainsi obtenus, ils sont comparés aux valeurs moyennes mensuelles de volumes réglementés prélevés entre 2008 et 2020 (Tableau 29). Ces valeurs comprennent les prélèvements pour l'AEP (en dehors des prélèvements de Bultière et Ribou qui sont intégrés au terme de remplissage des retenues), pour l'industrie dans le milieu, l'interception pour le remplissage hivernal des plans d'eau d'irrigation (correspondant aux prélèvements pour l'irrigation sans le re-remplissage en saison de basses eaux) ainsi que le remplissage des retenues de Bultière, Ribou et Verdon (calculées par un bilan entrées - restitutions). Dans ce calcul, les prélèvements pour l'abreuvement dans le milieu et le remplissage des plans d'eau pour compenser l'évaporation ne sont pas pris en compte car il ne sont pas réglementés. Du fait des remplissages de Bultière et Ribou-Verdon, les volumes sont particulièrement importants sur les unités Moine 1 et Grande Maine.

Tableau 29: Valeurs de volumes moyens réglementés prélevés sur les mois de hautes eaux entre 2008 et 2020. Ces volumes correspondent aux prélèvements AEP, industriels dans le milieu et au remplissage des retenues de Bultière et Ribou-Verdon et d'irrigation (sans prendre en compte l'évaporation).

шс	Valeurs	moyennes men	suelles de volu	mes prélevés e	n hautes eaux ((m³)
UG	Jan	Fév	Mar	Nov	Déc	Total
Sèvre amont	145 297	77 292	46 639	138 366	203 100	610 695
Sèvre moyenne 1	623 061	403 722	231 846	302 511	546 597	2 107 737
Sèvre moyenne 2	433 837	256 225	79 741	263 231	482 189	1 515 222
Sèvre aval	130 894	105 747	69 399	64 399	103 766	474 204
Ouin	62 885	50 619	46 221	56 775	70 613	287 113
Moine 1	3 090 477	1 261 897	1 344 577	2 460 616	3 817 350	11 974 917
Moine 2	260 345	165 173	53 865	106 964	237 539	823 886
Sanguèze	92 437	69 684	21 390	44 735	81 765	310 010
Grande Maine	1 136 820	860 346	1 098 586	2 655 154	2 553 602	8 304 507
Petite Maine	215 013	127 878	48 314	184 577	228 968	804 750
Maine	718 867	444 117	184 419	303 227	662 050	2 312 680
Total BV SN	6 909 934	3 822 700	3 224 996	6 580 553	8 987 539	29 525 723

Le Tableau 30 présente les différences entre les volumes prélevables hivernaux et les volumes réglementés hivernaux moyens mensuels prélevés entre 2008 et 2020.

Cette comparaison est donnée à titre indicatif car les volumes prélevés sont des éléments issus de la BNPE essentiellement et constituent des données conjoncturelles et non pas structurelles.

Pour juger de l'équilibre structurel, les volumes prélevables seront à comparer avec les autorisations administratives de prélèvements, ces données n'étant à ce jour pas disponibles dans le cadre de cette étude.

Enfin, il faut préciser que les valeurs de VPD affichées ici ne sont pas directement comparables aux valeurs obtenues lors de l'étude SAFEGE de 2012. En effet :

- Les UG diffèrent entre ces deux études,
- Les périodes d'étude diffèrent,
- Une agrégation d'octobre à mars avait été réalisée pour l'étude de 2012,
- D'autres différences méthodologiques existent.

Il convient également de noter que cette comparaison s'appuie sur la période passée récente (2008 – 2020). Les nouvelles autorisations de prélèvements accordées depuis ne sont pas intégrées. Cette remarque concerne par exemple l'augmentation des prélèvements AEP en lien avec le captage des Martyrs à Saint-Laurent-sur-Sèvre ou encore la modification des consignes de débit réservé du

barrage de Bultière. Pour mémoire, il est rappelé que la connaissance des volumes prélevés est entachée d'incertitudes (déclarations BNPE) tout comme celle des débits effectivement restitués par certains barrages (Ribou / Verdon essentiellement).

Le Tableau 30 montre que, pour la plupart des UG, les VPD hivernaux sont largement supérieurs aux volumes actuellement prélevés. Deux exceptions notables s'observent au sein des UG Grande Maine et Moine 1 du fait du remplissage des retenues AEP qui demandent plus de volume que ce que peuvent fournir les modalités de gestion étudiées.

Il convient toutefois de rappeler que le SDAGE Loire Bretagne 2022-2027 précise que « Les aménagements bénéficiant d'une déclaration d'utilité publique ou d'une déclaration d'intérêt général, les prélèvements pour l'alimentation en eau potable et la sécurité civile ainsi que les grands ouvrages de production d'électricité ne sont pas concernés par les modalités de prélèvement décrites dans les dispositions 7D-3 à 7D-5. »

Tableau 30: Différence entre les VPD hivernaux avec hypothèse de gestion coordonnée (GC) ou individuelle (GI) et les volumes réglementés hivernaux effectivement prélevés en moyenne sur la période 2008-2020. Les valeurs déficitaires de plus de 50 000 m³ par mois sont affichées en rouge, les valeurs déficitaires de moins de 50 000 m³ par mois sont affichées en orange, les valeurs bénéficiaires de moins de 50 000 m³ sont affichées en vert clair et celles qui montrent un bénéfice de plus de 50 000 m³ sont affichées en vert foncé.

110	Caánaria	Différences me	nsuelles entre	VPD théorique	es et volumes p	orélevés (m³) I	Hautes eaux
UG	Scénarios	Jan	Fév	Mar	Nov	Déc	Total
	A GI	1 337 249	1 061 394	849 653	402 792	952 497	4 603 584
UG Sèvre	A GC	1 415 824	1 149 363	926 316	455 292	1 013 851	4 960 645
amont	B GI	2 819 796	2 200 080	1 745 946	943 949	2 108 094	9 817 864
	B GC	3 138 559	2 541 255	2 095 547	1 176 125	2 347 284	11 298 769
	A GI	739 593	670 831	648 146	179 845	443 544	2 681 959
UG Sèvre	A GC	791 613	777 226	739 868	182 005	446 893	2 937 605
moyenne 1	B GI	2 102 247	1 745 384	1 528 138	662 201	1 433 686	7 471 656
	B GC	2 296 304	2 082 809	1 891 328	788 077	1 558 363	8 616 881
	A GI	191 467	349 581	462 910	13 713	7 298	1 024 970
UG Sèvre	A GC	261 864	326 319	475 409	131 684	116 997	1 312 274
moyenne 2	B GI	816 771	955 388	1 005 561	290 657	496 785	3 565 163
	B GC	1 031 881	1 018 020	1 010 728	527 283	801 260	4 389 173
	A GI	414 096	377 615	122 594	206 840	428 888	1 550 034
UG Sèvre	A GC	362 431	308 304	383 772	179 244	362 737	1 596 489
aval	B GI	959 087	860 977	314 587	478 078	961 541	3 574 271
	B GC	778 925	862 403	807 296	565 571	752 328	3 766 524
	A GI	260 946	203 543	153 754	77 402	192 580	888 225
UG Ouin	A GC	274 916	220 405	169 200	92 126	204 749	961 396
OG Ouiii	B GI	584 777	457 705	353 730	211 579	455 774	2 063 565
	B GC	648 902	527 493	427 703	274 387	503 959	2 382 444
	A GI	-2 705 229	-942 864	-1 115 836	-2 298 090	-3 517 880	-10 579 899
UG Moine	A GC	-2 687 451	-927 277	-1 097 200	-2 286 019	-3 498 483	-10 496 430
1	B GI	-2 319 981	-623 830	-887 095	-2 135 563	-3 218 410	-9 184 879
	B GC	-2 246 646	-556 832	-791 694	-2 076 744	-3 147 536	-8 819 452

UG	Scénarios	Différences me	ensuelles entre	VPD théorique	es et volumes p	orélevés (m³) I	Hautes eaux
UG	Scenarios	Jan	Fév	Mar	Nov	Déc	Total
	A GI	371 155	393 894	326 603	180 063	278 070	1 549 785
UG Moine	A GC	394 885	420 821	362 114	206 599	301 154	1 685 573
2	B GI	1 002 655	952 961	707 070	467 091	793 679	3 923 456
	B GC	1 123 978	1 076 256	890 855	584 258	910 002	4 585 349
	A GI	319 220	261 288	154 799	189 086	273 906	1 198 300
UG	A GC	337 543	276 493	173 294	204 321	283 324	1 274 976
Sanguèze	B GI	730 877	592 260	330 988	422 907	629 578	2 706 611
	B GC	806 169	659 028	416 148	484 200	676 061	3 041 607
	A GI	-636 083	-481 357	-825 635	-2 443 077	-2 147 121	-6 533 272
UG Grande	A GC	-613 992	-463 273	-785 492	-2 426 126	-2 128 687	-6 417 569
Maine	B GI	-135 346	-102 367	-552 684	-2 231 000	-1 740 640	-4 762 036
	B GC	-51 236	-8 659	-418 514	-2 144 920	-1 662 747	-4 286 075
	A GI	368 445	287 678	209 835	136 535	226 465	1 228 958
UG Petite	A GC	386 473	318 168	253 610	155 474	239 148	1 352 873
Maine	B GI	951 903	703 235	467 983	457 646	681 898	3 262 665
	B GC	1 010 700	816 144	631 875	542 230	731 461	3 732 410
	A GI	323 060	357 905	383 110	191 078	206 968	1 462 121
UG Maine	A GC	350 952	410 242	418 049	238 257	245 314	1 662 814
OG Maine	B GI	1 364 987	1 159 926	950 638	685 383	1 075 986	5 236 920
	B GC	1 484 333	1 371 889	1 167 067	828 109	1 199 492	6 050 890
	A GI	983 918	2 539 508	1 369 934	-3 163 811	-2 654 785	-925 237
TOTAL BV	A GC	1 275 057	2 816 791	2 018 941	-2 867 141	-2 413 003	830 644
SN	B GI	8 877 772	8 901 719	5 964 863	252 930	3 677 971	27 675 254
	B GC	10 021 868	10 389 806	8 128 340	1 548 578	4 669 927	34 758 518

Les figures 19 à 20 permettent de visualiser, par unité de gestion, par scénario et par sous-période les résultats obtenus en termes de nombre de mois pour lesquels les VPD sont situés sous les volumes prélevés moyens entre 2008 et 2020.

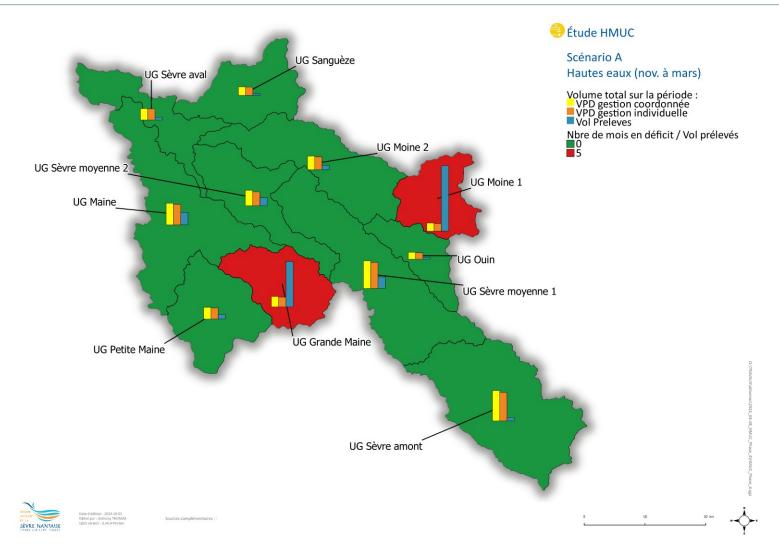


Figure 19: Comparaison des volumes potentiellement disponibles aux volumes moyens prélevés de 2008 à 2020 sur la période de novembre à mars | Scénario A

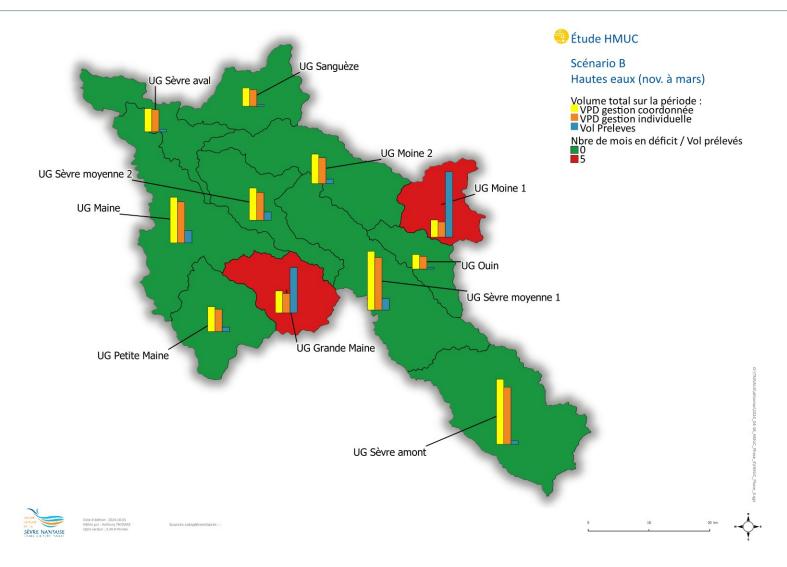


Figure 20: Comparaison des volumes potentiellement disponibles aux volumes moyens prélevés de 2008 à 2020 sur la période de novembre à mars | Scénario B

4.3 Analyse fréquentielle

L'approche conduite peut également être appréciée en considérant :

- le nombre de jours sur la période de hautes eaux où les prélèvements sont possibles (i.e. le débit du cours d'eau dépasse le débit plancher),
- les volumes qu'il aurait été possible de prélever avec ces règles sur la période passée récente.

Ces possibilités dépendent à la fois de la fixation du seuil plancher pour le début des prélèvements et de la tranche de prélèvement (exprimée en pourcentage du module) visée. En considérant l'hydrologie désinfluencée sur la période 2008 – 2020, les tableaux 31 à 34 et les figures 21 à 22 illustrent par année et par unité de gestion, les jours en nombre (figures 21 à 22) et en ratio (tableaux 33 à 34) ainsi que les volumes qui auraient pu être prélevés (tableaux 31 à 32) pour une tranche maximale de prélèvement de 40 % du module et un débit plancher variable. À noter que les jours où le débit dépasse le débit plancher tout en étant inférieur au débit plafond (débit plancher + tranche de prélèvement maximale) ont été dénombrés comme jours permettant un prélèvement. Néanmoins dans ce cas de figure, seul le volume correspondant à la différence entre le débit du cours d'eau et le débit plancher a été comptabilisé dans les volumes disponibles.

Dans les tableaux 33 à 34, l'échelle de couleur suivante a été utilisée :

Proportion > 80 % Proportion = 50 % Proportion < 20 %

Ces éléments mettent en évidence l'importante variabilité interannuelle des prélèvements pour un jeu de règles de gestion (débit plancher et tranche de prélèvement) donné. En d'autres termes, même avec des règles de gestion relativement « permissives » la capacité à prélever réellement à hauteur des volumes prélevables calculés avec ces règles n'est pas acquise chaque année.

Ainsi les années « favorables », comme 2020 ou 2013, sont marquées par un hiver pluvieux et une ressource relativement disponible. A l'inverse, les hautes eaux des années 2011, 2015 et plus encore, 2017 sont des années où globalement moins de 50 % des jours remplissent les conditions de débits suffisantes pour permettre un prélèvement.

A partir de cet échantillon, la quinquennale sèche (valeurs dépassées 4 années sur 5) se rapproche de l'année 2012 alors que 2018 semble plus représentative de conditions quinquennales humides (valeurs dépassées 1 année sur 5).

Tableau 31: Volume de prélèvements possibles sur la période novembre à mars | Seuil = Module DESINF | Tranche prélèvement = 0,4 x Module DESINF

	lésinfluencée 008 – 2020)	UG Sèvre amont	UG Sèvre moyenne 1	UG Sèvre moyenne 2	UG Sèvre aval	UG Ouin	UG Moine 1	UG Moine 2	UG Sanguèze	UG Grande Maine	UG Petite Maine	UG Maine
	2008	13 623 283	10 757 778	4829862	2 664 925	2 615 602	2 721 965	4 378 524	3 017 527	3 929 447	4 678 375	7 024 144
	2009	9 606 126	8 819 500	5 069 765	3 052 586	2 308 541	2 809 448	4 790 468	3 133 651	3 613 329	4 151 426	7 355 914
	2010	12 437 026	10 890 385	6 668 008	5 614 566	2 876 532	3 479 931	5 840 446	4 363 009	4815 095	5 676 137	11 045 850
	2011	6818 170	7 561 360	4 052 254	3 544 334	1 616 177	2 021 134	3 683 795	2 062 274	2 541 879	2 755 827	5 987 893
	2012	11 433 847	10 701 424	5 037 275	3 028 325	2 518 851	2 8 4 8 7 6 1	4 555 284	2 254 807	3 183 820	3 559 694	5 806 697
Volume de	2013	15 840 348	15 039 382	7 943 799	4 773 826	3 653 446	4 283 829	6 9 3 0 7 0 3	3 980 285	5 143 449	5 807 093	10 206 966
prélèvements	2014	12 871 117	12 781 357	7 864 948	7 193 464	2 753 423	3 707 863	7 297 509	4 578 733	5 054 415	5 342 789	11 415 725
possibles sur la	2015	6 474 591	6 947 951	3 061 580	2 084 408	2 008 280	2 401 401	4 2 15 0 69	2 372 986	2 507 170	2 748 536	5 546 314
période	2016	11 835 982	10 144 975	5 091 037	3 839 893	2 615 845	3 080 067	5 386 072	3 328 356	3 986 551	4 395 436	7 875 899
Novembre à Mars Seuil =	2017	4 940 933	4 145 829	2 787 552	2 040 575	1 144 876	1 289 643	2 155 232	1 672 780	1 455 838	1 530 019	3 668 381
module DESINF	2018	17 647 036	14 981 475	9 631 441	6 398 381	4 179 741	4 836 036	7 897 378	4 811 863	5 935 592	6 970 367	12 047 274
Tranche	2019	14 232 697	11 683 390	6 548 965	4 371 674	2 943 908	3 542 393	6 214 883	3 480 490	4 453 025	4 664 155	9 163 223
prélèvement =	2020	17 061 868	14 965 229	8 170 661	6 522 501	3 469 017	3 998 570	6 974 693	4 514 255	5 619 991	6 703 230	11 582 115
0,4 x Module	Moyenne	11 909 463	10 724 618	5 904 396	4 240 728	2 669 557	3 155 465	5 409 235	3 351 617	4 018 431	4 537 160	8 363 569
	Min	4 940 933	4 145 829	2 787 552	2 040 575	1 144 876	1 289 643	2 155 232	1 672 780	1 455 838	1 530 019	3 668 381
	Quintile sec	7 933 352	8 064 616	4 363 297	2 8 10 285	2 128 385	2 529 626	4 280 451	2 302 079	2 798 655	3 077 374	5 879 175
	Médiane	12 437 026	10 757 778	5 091 037	3 839 893	2 615 845	3 080 067	5 386 072	3 328 356	3 986 551	4 6 6 4 1 5 5	7 875 899
	Quintile humide	15 197 287	14 091 680	7 912 259	6 084 855	3 258 974	3 882 288	6 957 097	4 453 757	5 107 835	5 754 711	11 267 775
	Max	17 647 036	15 039 382	9 631 441	7 193 464	4 179 741	4 836 036	7 897 378	4 811 863	5 935 592	6 970 367	12 047 274

Les valeurs en rouge correspondent aux cas où les volumes de prélèvements possibles sont inférieurs aux valeurs moyennes calculées sur la période 2008 – 2020.

Tableau 32: Volume de prélèvements possibles sur la période novembre à mars | Seuil = 1,2 x Module DESINF | Tranche prélèvement = 0,4 x Module DESINF

	lésinfluencée 008 – 2020)	UG Sèvre amont	UG Sèvre moyenne 1	UG Sèvre moyenne 2	UG Sèvre aval	UG Ouin	UG Moine 1	UG Moine 2	UG Sanguèze	UG Grande Maine	UG Petite Maine	UG Maine
	2008	13 139 981	10 665 734	4 330 072	3 395 820	2 500 485	2 577 327	4 086 410	2 814 725	3 690 130	4 428 342	6 608 397
	2009	9 287 126	8 556 775	5 494 469	2 805 782	2 2 1 8 6 6 5	2 734 763	4 564 342	3 101 799	3 525 755	4 099 588	7 246 236
	2010	12 004 748	10 744 434	6 047 311	5 152 606	2 771 360	3 377 020	5 648 878	4 284 577	4 562 151	5 594 978	10 730 618
	2011	6 280 594	7 005 935	3 685 725	4 419 583	1 514 597	1 919 674	3 420 431	1 934 647	2 3 4 9 1 4 7	2 622 511	5 444 123
Valuma da	2012	10 799 080	10 395 255	4 950 968	1 960 212	2 407 280	2 731 808	4 265 219	2 169 560	3 032 231	3 419 035	5 482 998
Volume de prélèvements	2013	15 277 093	14 935 882	8 200 735	4 097 182	3 583 038	4 159 221	6 719 014	3 869 651	5 010 367	5 617 531	10 099 685
possibles sur la	2014	12 293 237	11 913 675	7 409 137	6 895 325	2 612 515	3 543 794	7 231 746	4 458 071	4 865 798	5 235 819	11 251 389
période	2015	5 993 810	6 111 403	2 805 144	3 280 764	1 825 616	2 187 913	3 883 300	2 283 725	2 400 735	2 632 162	5 426 231
Novembre à	2016	11 668 591	10 151 232	4 892 785	3 840 875	2 595 925	3 058 028	5 360 135	3 318 883	3 965 690	4 366 391	7 833 776
Mars Seuil =	2017	4 704 144	3 947 827	2 478 119	1 739 432	1 084 567	1 249 096	2 105 354	1 625 108	1374 494	1 413 902	3 579 588
1,2 x module	2018	17 584 468	14 801 545	10 217 306	6 135 413	4 077 544	4 754 120	7 517 527	4 722 288	5 824 703	6 970 367	11 785 349
DESINF	2019	13 766 921	11 319 746	6 493 067	3 850 541	2 8 9 1 6 7 1	3 416 993	6 108 024	3 377 367	4 375 411	4 555 234	8 993 122
Tranche	2020	16 646 752	14 690 202	7 638 523	7 302 294	3 355 557	3 934 727	6 835 656	4 350 257	5 489 800	6 559 974	11 430 568
prélèvement = 0,4 x Module	Moyenne	11 495 888	10 403 050	5 741 797	4 221 218	2 572 217	3 049 576	5 211 234	3 254 666	3 882 032	4 424 295	8 147 083
0,4 x Wodule	Min	4 704 144	3 947 827	2 478 119	1 739 432	1 084 567	1 249 096	2 105 354	1 625 108	1 374 494	1 413 902	3 579 588
	Quintile sec	7 483 207	7 626 271	3 943 464	2 995 775	1 982 836	2 343 679	3 964 544	2 215 226	2 653 333	2 946 911	5 459 673
	Médiane	12 004 748	10 665 734	5 494 469	3 850 541	2 595 925	3 058 028	5 360 135	3 318 883	3 965 690	4 428 342	7 833 776
	Quintile humide	14 673 024	13 579 592	7 546 769	5 742 290	3 170 003	3 778 353	6 788 999	4 323 985	4 952 539	5 608 510	11 043 081
	Max	17 584 468	14 935 882	10 217 306	7 302 294	4 077 544	4 754 120	7 517 527	4 722 288	5 824 703	6 970 367	11 785 349

Les valeurs en rouge correspondent aux cas où les volumes de prélèvements possibles sont inférieurs aux valeurs moyennes calculées sur la période 2008 – 2020.

Tableau 33: Ratio de durée de prélèvements possibles sur la période novembre à mars | Seuil = Module DESINF

Hydrologie dé: (période 200		UG Sèvre amont	UG Sèvre moyenne 1	UG Sèvre moyenne 2	UG Sèvre aval	UG Ouin	UG Moine 1	UG Moine 2	UG Sanguèze	UG Grande Maine	UG Petite Maine	UG Maine
	2008	69,7 %	65,1 %	62,5 %	59,9 %	61,8 %	56,6 %	53,3 %	57,9 %	60,5 %	68,4 %	61,2 %
	2009	47,0 %	49,7 %	51,0 %	51,0 %	50,3 %	53,0 %	51,7 %	51,0 %	50,3 %	53,6 %	51,0 %
	2010	66,2 %	64,2 %	66,2 %	72,8 %	62,3 %	66,2 %	64,2 %	73,5 %	72,2 %	73,5 %	77,5 %
	2011	39,7 %	45,0 %	45,7 %	47,0 %	38,4 %	41,7 %	41,7 %	39,7 %	43,0 %	39,1 %	44,4 %
Ratio de	2012	61,8 %	63,2 %	59,9 %	56,6 %	58,6 %	55,9 %	52,6 %	40,1 %	50,0 %	49,3 %	49,3 %
prélèvements	2013	81,5 %	83,4 %	81,5 %	79,5 %	79,5 %	78,8 %	76,8 %	68,2 %	73,5 %	78,1 %	72,8 %
possibles sur la	2014	71,5 %	75,5 %	77,5 %	80,8 %	64,9 %	72,8 %	72,8 %	77,5 %	75,5 %	70,9 %	78,8 %
période	2015	39,7 %	45,7 %	47,0 %	39,7 %	51,0 %	52,3 %	51,7 %	45,0 %	37,7 %	38,4 %	39,1 %
Novembre à	2016	55,3 %	55,3 %	54,6 %	54,6 %	52,6 %	53,3 %	52,6 %	52,0 %	52,6 %	54,6 %	53,3 %
Mars Seuil =	2017	26,5 %	26,5 %	27,2 %	27,2 %	27,2 %	26,5 %	23,2 %	29,8 %	23,2 %	22,5 %	24,5 %
module DESINF	2018	82,1 %	82,8 %	84,8 %	85,4 %	87,4 %	86,8 %	85,4 %	79,5 %	82,8 %	86,1 %	84,8 %
	2019	72,8 %	71,5 %	68,9 %	68,2 %	62,9 %	65,6 %	62,9 %	60,9 %	62,3 %	62,9 %	63,6 %
	2020	82,9 %	82,9 %	82,2 %	82,2 %	76,3 %	75,0 %	74,3 %	78,3 %	78,9 %	88,2 %	81,6 %
	Moyenne	61,3 %	62,4 %	62,2 %	61,9 %	59,5 %	60,3 %	58,7 %	58,0 %	58,7 %	60,4 %	60,1 %
	Quintile sec	42,6 %	47,3 %	48,6 %	48,6 %	50,6 %	52,6 %	51,7 %	42,1 %	45,8 %	43,2 %	46,4 %

Nombre de jours de prélèvements possibles | Seuil = module DESINF

Novembre à mars (151 j) | Période 2008 - 2020 | Hydrologie désinfluencée

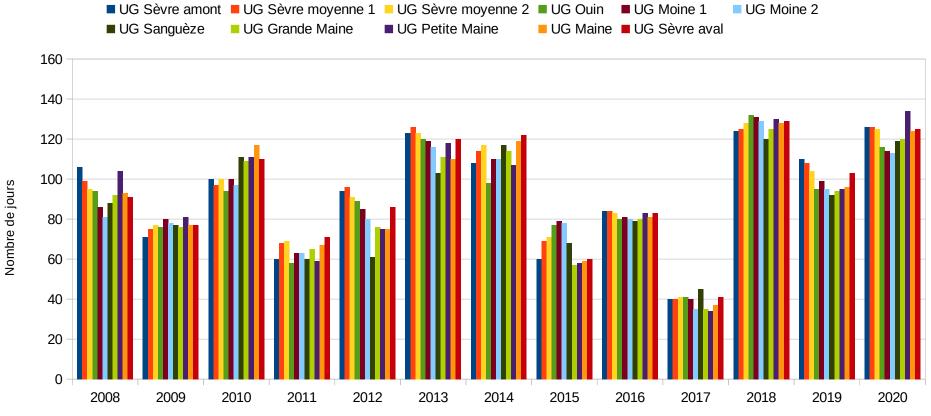


Figure 21: Nombre de jours de prélèvements possibles sur la période novembre à mars avec débit plancher = module désinfluencé

Tableau 34: Ratio de durée de prélèvements possibles sur la période novembre à mars | Seuil = 1,2 x Module DESINF

Hydrologie dé (période 200		UG Sèvre amont	UG Sèvre moyenne 1	UG Sèvre moyenne 2	UG Sèvre aval	UG Ouin	UG Moine 1	UG Moine 2	UG Sanguèze	UG Grande Maine	UG Petite Maine	UG Maine
	2008	61,2 %	59,2 %	53,3 %	52,6 %	52,0 %	46,1 %	42,8 %	44,7 %	49,3 %	55,9 %	50,0 %
	2009	43,0 %	44,4 %	47,0 %	47,0 %	44,4 %	47,0 %	45,7 %	49,0 %	46,4 %	51,0 %	48,3 %
	2010	57,0 %	57,0 %	57,6 %	62,9 %	56,3 %	58,9 %	56,3 %	67,5 %	61,6 %	69,5 %	68,9 %
	2011	29,8 %	34,4 %	35,1 %	37,7 %	31,1 %	33,8 %	33,8 %	31,1 %	32,5 %	32,5 %	34,4 %
Ratio de	2012	50,7 %	53,9 %	52,0 %	46,1 %	49,3 %	48,0 %	43,4 %	34,9 %	40,8 %	42,1 %	39,5 %
prélèvements	2013	70,9 %	75,5 %	75,5 %	72,2 %	72,8 %	71,5 %	68,2 %	62,3 %	66,9 %	70,2 %	68,2 %
possibles sur la	2014	57,6 %	60,9 %	65,6 %	69,5 %	53,0 %	62,3 %	67,5 %	70,2 %	64,9 %	64,2 %	71,5 %
période Novembre à	2015	28,5 %	31,8 %	33,1 %	34,4 %	38,4 %	39,1 %	39,7 %	36,4 %	32,5 %	32,5 %	34,4 %
Mars Seuil =	2016	52,6 %	53,3 %	52,6 %	52,6 %	51,3 %	52,0 %	51,3 %	51,3 %	51,3 %	53,3 %	52,0 %
1,2 x module	2017	22,5 %	22,5 %	22,5 %	22,5 %	21,9 %	21,9 %	21,2 %	25,8 %	18,5 %	17,9 %	21,2 %
DESINF	2018	80,8 %	80,1 %	83,4 %	82,8 %	81,5 %	82,1 %	75,5 %	74,2 %	77,5 %	86,1 %	80,8 %
	2019	63,6 %	62,3 %	62,3 %	60,9 %	58,3 %	58,3 %	58,9 %	53,6 %	57,0 %	57,0 %	58,9 %
	2020	76,3 %	77,0 %	75,0 %	77,6 %	67,8 %	69,1 %	67,8 %	69,1 %	72,4 %	81,6 %	77,0 %
	Moyenne	53,4 %	54,8 %	55,0 %	55,3 %	52,2 %	53,1 %	51,7 %	51,6 %	51,6 %	54,9 %	54,2 %
	Quintile sec	35,1 %	38,4 %	39,9 %	41,1 %	40,8 %	41,9 %	40,9 %	35,5 %	35,8 %	36,3 %	36,5 %

Nombre de jours de prélèvements possibles | Seuil = 1,2 x module DESINF

Novembre à mars (151 j) | Période 2008 - 2020 | Hydrologie désinfluencée

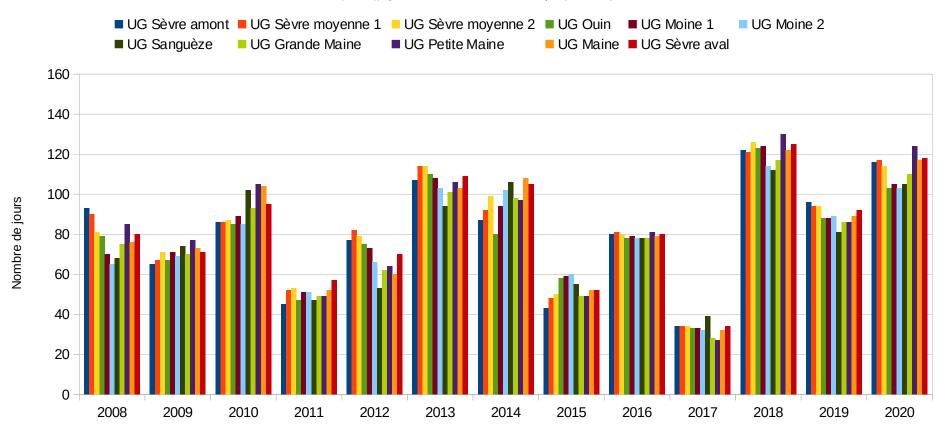


Figure 22: Nombre de jours de prélèvements possibles sur la période novembre à mars avec débit plancher = 1,2 x module désinfluencé

À retenir :

Dans cette section, nous avons montré les valeurs de volumes potentiellement disponibles obtenues via un calcul théorique pour chaque mois de la période hivernale et pour chaque UG. Ces valeurs montrent un déficit pour les UG concernées par les deux importantes retenues dédiées à l'eau potable sur le bassin versant. Si dans de nombreux autres cas les VPD semblent supérieurs aux volumes effectivement prélevés entre 2008-2020, il convient de rappeler qu'il s'agit de valeurs moyennes, et qu'il existe des années pour lesquelles les VPD moyens ne pourront pas être satisfaits.

5 Répartition temporelle des volumes prélevables

Les calculs des volumes prélevables ont été réalisés au pas de temps mensuel. Différentes possibilités d'agrégation de ces valeurs sont toutefois possibles. Le Tableau 35 illustre les avantages et inconvénients de plusieurs répartition possibles :

Tableau 35: Exemple de possibilités de répartition temporelle des volumes prélevables

Pas de temps	Avantages	Inconvénients			
Mensuel	Bonne prise en considération du régime hydrologique général Réglage fin de la gestion structurelle et des équilibres milieux usages	Faible marge de manœuvre vis-à-vis des usages si conditions hydrologiques particulières (exemple mois de mai très pluvieux succédant à un mois d'avril sec) Autorisations administratives et gestion opérationnelle contraintes			
Saisons (hautes eaux printemps très basses eaux automne)	•	emps « mensuel » et « Hautes eaux eaux »			
Hautes eaux Basses eaux	Autorisations administratives et gestion opérationnelle plus aisées	Grande liberté dans la répartition dans le temps des prélèvements effectués, ce qui peut avoir pour conséquence un recours fréquent à la gestion de crise et mettre à mal les milieux ainsi que les usages.			

Le Comité Technique a proposé de s'appuyer sur trois périodes : hautes eaux (nov. ou déc. à mars), printemps (avril à juin) très basses eaux (juil. à oct. ou nov.), tout en rappelant que lorsque l'on agrège des volumes prélevables mensuels en un seul volume prélevable saisonnier, on prend collectivement le risque de manquer l'objectif de satisfaction des besoins et des usages au cœur des mois de basses eaux. Le Tableau 36 et le Tableau 37 présentent les résultats agrégés selon cette répartition et en ne sommant que les valeurs mensuelles non négatives.

Il reviendra au Comité de Pilotage de définir les modalités de répartition temporelle des volumes prélevables.

Avant de conférer une éventuelle portée réglementaire à ces valeurs, il conviendrait de procéder à des arrondis à 5 000 m³ ou 10 000 m³ par exemple.

Tableau 36: Volumes prélevables (VP) et volumes potentiellement disponibles (VPD) agrégés | Scénario A

		HAUTE	S EAUX		BASSES EAUX						
			nov. à r	nars	Avril à j	juin	Juillet à	oct.			
UG	Tranche prélèvement retenue	Type gestion	Volumes potent. disponibles (m³)	V prélevé moyen 2008 – 2020 (m³)	Volumes prélevables (m³)	V prélevé moyen 2008 – 2020 (m³)	Volumes prélevables (m³)	V prélevé moyen 2008 – 2020 (m³)			
UG Sèvre	0,20 x M	Coord.	5 571 340	610 695	1 056 311	65 302	0	265 038			
amont	0,20 X W	Indiv.	5 214 279	010 093	1 050 511	05 302	0	205 036			
UG Sèvre	0,20 x M	Coord.	5 045 342	2 107 737	4 031 112	622 989	131 724	1 420 499			
moyenne 1	0,20 X IVI	Indiv.	4 789 696	2 101 131	4 031 112	022 909	131 724	1 420 499			
UG Sèvre	0,20 x M	Coord.	2 827 496	1 515 222	2 668 100	120 720	289 613	489 857			
moyenne 2	0,20 X IVI	Indiv.	2 540 192	1 313 222	2 000 100	120 720	209 013	409 007			
UG Sèvre	0,20 x M	Coord.	2 070 693	474 204	2 678 946	197 155	84 424	240 064			
aval	0,20 X IVI	Indiv.	2 024 238	414 204	2 070 940	197 133	04 424	240 004			
UG Ouin	0,20 x M	Coord.	1 248 509	287 113	0	133 724	10 909	191 858			
OG Ouiii	0,20 X IVI	Indiv.	1 175 338	207 113		133 724	10 909	191 030			
UG Moine	0,20 x M	Coord.	1 478 487	11 974 917	80 739	770 060	0	801 189			
1	0,20 X W	Indiv.	1 395 018	11 314 311	00 733	770 000		001 103			
UG Moine	0,20 x M	Coord.	2 509 459	823 886	1 596 882	133 769	4 116 462	546 977			
2	0,20 X W	Indiv.	2 373 671	023 000	1 330 002	100 700	4 110 402	340 377			
UG	0,20 x M	Coord.	1 584 986	310 010	0	7 849	33 824	30 514			
Sanguèze	0,20 X W	Indiv.	1 508 310	310 010		7 0-3	33 024	30 314			
UG Grande	0,20 x M	Coord.	1 886 938	8 304 507	326 752	664 043	119 959	513 265			
Maine	0,20 X III	Indiv.	1 771 235	0 00+ 007	020 102	00+0+0	110 000	010 200			
UG Petite	0,20 x M	Coord.	2 157 623	804 750	0	41 811	12 954	237 083			
Maine	0,20 X W	Indiv. 2 033 70		30-130		71 011	12 334	207 000			
UG Maine	Maine 0,20 x M	Coord.	3 975 494	2 312 680	1 386 590	213 284	293 749	805 216			
3 O Manio	OG Maine 0,20 X W	Indiv.	3 774 801	2 012 000	2 330 330	210 204	200 140	000 210			
TOTA	L BV SN	Coord.	30 356 367	29 525 723	13 825 432	2 970 705	5 093 618	5 541 560			
1314		Indiv.	28 600 486	20 020 120	10 020 402	2 370 703	3 033 010	0 041 000			

Les VP et VPD inférieurs aux volumes prélevés moyens sur la période 2008 – 2020 sont figurés en rouge

Tableau 37: Volumes prélevables (VP) et volumes potentiellement disponibles (VPD) agrégés | Scénario B

		HAUTE	S EAUX		BASSES EAUX					
			nov. à r	nars	Avril à j	juin	Juillet à	oct.		
UG	Tranche prélèvement retenue	Type gestion	Volumes potent. disponibles (m³)	V prélevé moyen 2008 – 2020 (m³)	Volumes prélevables (m³)	V prélevé moyen 2008 – 2020 (m³)	Volumes prélevables (m³)	V prélevé moyen 2008 – 2020 (m³)		
UG Sèvre	0,40 x M	Coord.	11 909 464	610 695	3 071 197	65 302	0	265 038		
amont	0,40 X W	Indiv.	10 428 559	010 092	3 0/1 19/	05 302	0	205 036		
UG Sèvre	0,40 x M	Coord.	10 724 618	2 107 737	9 498 125	622 989	1 129 297	1 420 499		
moyenne 1	0,40 X W	Indiv.	9 579 393	2 107 737	9 496 125	022 909	1 129 297	1 420 499		
UG Sèvre	0,40 x M	Coord.	5 904 395	1 515 222	4 692 135	120 720	1 359 096	489 857		
moyenne 2	0,40 X W	Indiv.	5 080 385	1 313 222	4 092 133	120 720	1 339 090	409 007		
UG Sèvre	0,40 x M	Coord.	4 240 728	474 204	4 498 332	197 155	1 031 903	240 064		
aval	0,40 X W	Indiv.	4 048 475	474 204	4 490 332	197 155	1 031 903	240 004		
UG Ouin	Ouin 0,40 x M		2 669 557	287 113	273 686	133 724	10 909	191 858		
OG Ouiii	0,40 X IVI	Indiv.	2 350 678	207 113	273 000	133 724	10 909	191 030		
UG Moine	0,40 x M	Coord.	3 155 465	11 974 917	1 101 003	770 060	0	801 189		
1	0,40 X W	Indiv.	2 790 038	11 314 311	1 101 003	770 000		001 103		
UG Moine	0,40 x M	Coord.	5 409 235	823 886	2 743 893	133 769	4 397 693	546 977		
2	0,40 X W	Indiv.	4 747 342	023 000	2 143 033	100 700	4 397 093	340 311		
UG	0,40 x M	Coord.	3 351 617	310 010	140 229	7 849	33 824	30 514		
Sanguèze	0,40 X W	Indiv.	3 016 621	310 010	140 223	7 0-3	33 024	30 314		
UG Grande	0,40 x M	Coord.	4 018 432	8 304 507	794 582	664 043	119 959	513 265		
Maine	0,40 X W	Indiv.	3 542 471	0 304 307	734 302	004 043	113 333	313 203		
UG Petite	0,40 x M	Coord.	4 537 160	804 750	117 955	41 811	12 954	237 083		
Maine	0,70 A W	Indiv.	4 067 415	00+730	117 955	71 011	12 334	207 000		
UG Maine	0.40 x M	Coord. 8 36		2 312 680	3 679 654	213 284	293 749	805 216		
JO WAITE	OG Maine 0,40 X W		7 549 600	2 312 300	0 070 004	210 204	233 143	003 210		
TOTA	TOTAL BV SN		64 284 241	29 525 723	30 610 791	2 970 705	8 389 384	5 541 560		
1017	L DV SIV	Indiv.	57 200 977	23 323 123	30 010 791	2 310 103	0 303 304	3 341 300		

Les VP et VPD inférieurs aux volumes prélevés moyens sur la période 2008 – 2020 sont figurés en rouge

6 Comparaison des volumes prélevables avec l'étude de 2012

L'étude « volumes prélevables » de 2012 a permis d'établir des valeurs de volumes prélevables par unité de gestion :

- Au pas de temps de mensuel sur la période d'avril à septembre,
- Agrégés sur la période d'octobre à mars.

Le Tableau 38 présente les volumes prélevables issus de l'étude de 2012. Il convient d'indiquer que les valeurs issues de l'étude de 2012 n'ont pas de valeurs réglementaires. Enfin, il faut préciser que les valeurs de VP et VPD affichées dans ce rapport ne sont pas directement comparables aux valeurs obtenues lors de l'étude SAFEGE de 2012. En effet :

- Les UG diffèrent entre ces deux études.
- Les périodes d'étude diffèrent,
- Une agrégation d'octobre à mars avait été réalisée pour l'étude de 2012,
- D'autres différences méthodologiques existent.

Tableau 38: Volumes prélevables hors soutien d'étiage (10³ m³), SAFEGE - 2012 – Hypothèse hiver (rapport avenant)

(Étuc	Volumes prélevables hors soutien d'étiage (10³ m³) (Étude « volumes prélevables » de 2012, hypothèse « hiver »)												
Tronçon	Avril	Mai	Juin	Juillet	Août	Sept.	OctMars						
Grande Maine	1 037	536	0	0	0	0	7 455						
Petite Maine	778	321	0	0	0	0	193						
Maine	2 074	937	0	0	0	0	600						
Sèvre amont	1 115	429	130	27	0	0	0						
Sèvre 1 (Tiffauges)	2 333	937	207	40	0	0	1 396						
Sèvre 2 (Clisson)	778	429	130	40	0	0	641						
Sèvre aval	778	536	518	268	0	0	0						
Moine 1 (Cholet)	829	429	259	268	188	156	3 332						
Moine 2 (Saint-Crespin)	829	429	259	268	188	156	0						
Ouin	259	134	13	0	0	0	0						
Sanguèze	518	268	0	0	0	0	0						
Total	11 327	5 383	1 516	911	375	311	13 616						

La comparaison de ces valeurs avec celles calculées dans le cadre de la présente étude ne peut avoir qu'une portée purement indicative car de nombreuses différences méthodologiques existent entre l'approche calculatoire définie dans la présente étude et celle de 2012. Le Tableau 39 en présente les principales.

Tableau 39: Principales différences méthodologiques entre l'étude HMUC et l'étude « volumes prélevables » de 2012

Pas de temps	Étude HMUC	Étude « volumes prélevables » 2012
Unités de gestion	11 unités de gestion mais découpage différent de l'étude « volumes prélevables de 2012 » pour la quasi totalité des UG	11 unités de gestion mais découpage différent de l'étude HMUC pour la quasi totalité des UG
Période hydrologique de référence	2008 - 2020	2000 - 2009
Modèle hydrologique utilisé	GR6J (INRAE)	NAM (DHI)
Méthode de calculs	Rejets de STEP et soutien d'étiage de Ribou / Verdon considérés tout ou partie comme prélevables	Intégralité des rejets de STEP et soutien d'étiage des barrages considérés comme non prélevables
Débits biologiques	Définis en 13 stations avec différenciation saisonnière et actualisation des résultats de l'étude « volumes prélevables » de 2012	Définis en 11 stations sans différenciation saisonnière

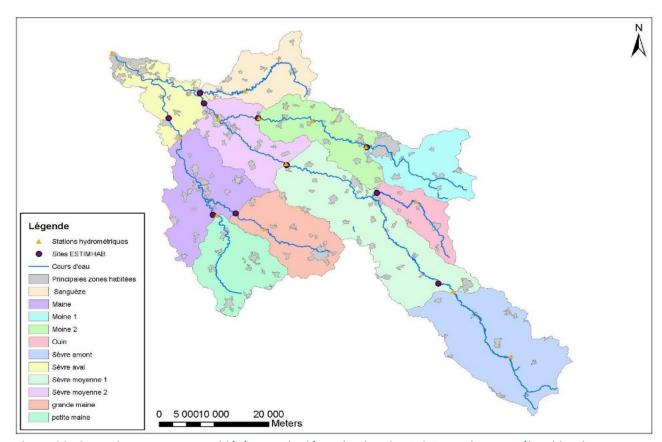


Figure 23: Carte des tronçons considérés pour la détermination des DOE et volumes prélevables (Rapport phase 4, étude « Volumes prélevables » de 2012)

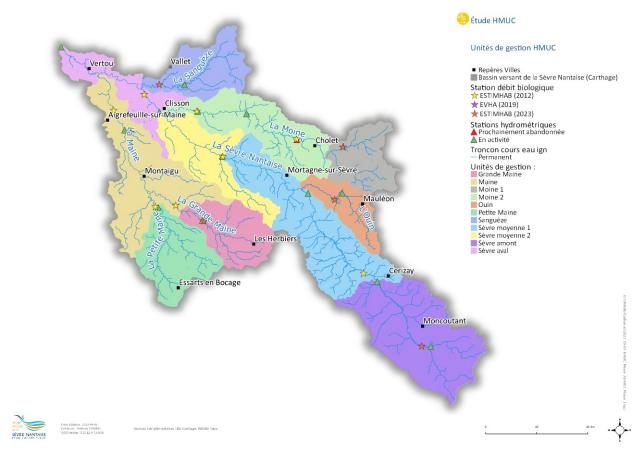


Figure 24: Unités de gestion de l'étude HMUC

À retenir :

Une comparaison a été effectuée entre VP et VPD obtenues dans l'étude HMUC et VP obtenus dans l'étude SAFEGE de 2012. Cependant, cette comparaison reste indicative en raison des nombreuses différences méthodologiques.

7 Proposition de gammes de valeurs de DCR, DSAR et DSA

7.1 Analyse de la cohérence entre DOE et débits de gestion de crise

Le guide HMUC v1.1 de l'Agence de l'Eau Loire-Bretagne invite à veiller « à la cohérence de la valeur du DOE avec les valeurs de DCR proposées, tout en évitant la confusion entre ces concepts (débit mensuel de planification attaché au "bon état" d'une part et seuils journalier de gestion de crise d'autre part). Le choix d'un débit de gestion de crise journalier est étayé par la nécessité d'un contrôle possible sur le terrain de ce débit puisqu'il déclenche les restrictions des usages nécessaires et imposées par les arrêtés de limitation des usages de l'eau. »

Les DOE étant définis à l'exutoire des unités de gestion alors que les débits de gestion de crise sont déterminés au droit de stations hydrométriques, pour pouvoir analyser la cohérence entre les DOE (gestion structurelle) et les débits de gestion de crise (gestion conjoncturelle), il convient de transposer ces derniers à l'exutoire de l'unité de gestion considérée. Pour ce faire, un ratio simple de bassin versant a été exploité. Cette méthode concerne uniquement les débits de gestion de crise de :

- la station hydrométrique de la Sanguèze à Tillières, dont le débit est transposé à l'exutoire de l'unité de gestion Sanguèze avec un coefficient de transposition = 1,74
- la station hydrométrique de la Maine à Remouillé, dont le débit est transposé à l'exutoire de l'unité de gestion Maine avec un coefficient de transposition = 1,14

Pour les autres stations hydrométriques intervenant dans la gestion de crise, il a été considéré que leur positionnement était suffisamment proche de l'exutoire de l'unité de gestion concernée et ne nécessitait donc pas de transposition.

Considérant que l'arrêté cadre inter-préfectoral « sécheresse » du bassin versant de la Sèvre Nantaise en vigueur (arrêté du 31 juillet 2023) prévoit des mesures de limitations / restrictions des usages de l'eau graduelles, les DOE ont été comparées aux débits d'alerte (DSA), d'alerte renforcée (DSAR) et de crise (DCR). A partir du seuil d'alerte renforcée il semble pouvoir être considéré que des mesures conséquentes de limitations / restrictions sont susceptible d'entrer en vigueur.

Sur ces bases, le Tableau 40 présente l'analyse indicative de cohérence réalisée entre gestion conjoncturelle (DOE issus des scénarios A et B) et débits de gestion de crise actuels transposés.

Ce tableau permet de confirmer que généralement les DOE sont bien supérieurs aux DSA ou aux DSAR. Il existe toutefois plusieurs cas où les valeurs de DOE sont situées sous le DSAR, voire le DCR. Ce constat est renforcé pour le scénario B qui dispose régulièrement de DOE inférieurs au scénario A. Pour chacun des deux scénarios, il convient de noter que l'unité de gestion Moine 2 est affectée de DOE inférieurs au débit de crise plusieurs mois d'affilée.

Tableau 40: Analyse de cohérence entre DOE et débits de gestion de crise actuels

							Scénario A					
		UG Sèvre amont	UG Sèvre moyenne 1	UG Sèvre moyenne 2	UG Sèvre aval	UG Ouin	UG Moine 1	UG Moine 2	UG Sanguèze	UG Grande Maine	UG Petite Maine	UG Maine
	avr.	1 410	3 000	4 040	5 950	341	360	920	249	375	357	1270
	mai	1 268	2 000	2 765	4 125	232	291	818	119	262	195	950
	juin	450	580	900	1 5 2 0	125	160	410	57	123	89	330
DOE	juil.	450	580	900	1 5 2 0	73	99	248	27	59	42	212
DOE	août	274	390	620	1 050	45	69	177	18	32	25	127
	sept.	208	390	620	807	33	58	156	13	20	15	81
	oct.	230	477	741	957	44	68	183	20	27	25	116
	nov.	747	1 559	2 657	4 1 2 5	179	256	727	216	183	217	868
	Station hydro	St-Mesmin	Tiffauges		Nantes			St-Crespin	Tillières		St-Georges	Remouillé
Gestion crise	DSA transposé	300	330		1 150			450	26		50	307
Gestion trise	DSAR transposé	170	270		900			310	17		20	125
	DCR transposé	150	200		570			250	9		10	102
	Légende	DSAR < D	OE < DSA		DCR < DO	E < DSAR		DOE <	< DCR			

							Scénario B					
		UG Sèvre amont	UG Sèvre moyenne 1	UG Sèvre moyenne 2	UG Sèvre aval	UG Ouin	UG Moine 1	UG Moine 2	UG Sanguèze	UG Grande Maine	UG Petite Maine	UG Maine
	avr.	940	1 000	1 490	2 300	230	150	580	180	250	300	630
	mai	940	1 000	1 490	2 3 0 0	230	150	580	119	250	195	630
	juin	325	390	485	580	125	80	160	50	80	89	190
DOE	juil.	325	390	485	580	73	80	160	27	59	42	190
DOL	août	200	270	340	580	45	69	160	18	32	25	127
	sept.	200	270	340	580	33	58	156	13	20	15	81
	oct.	230	477	741	957	44	68	183	20	27	25	116
	nov.	747	1 000	1 490	2 300	179	150	580	180	183	217	630
	Station hydro	St-Mesmin	Tiffauges		Nantes			St-Crespin	Tillières		St-Georges	Remouillé
(-ASTION CRISE	DSA transposé	300	330		1 150			450	26		50	307
	DSAR transposé	170	270		900			310	17		20	125
	DCR transposé	150	200		570			250	9		10	102

Les valeurs de débits de gestion de crise obtenues par les deux méthodes proposées ci-après permettent par ailleurs d'assurer une meilleure cohérence de ceux-ci avec les DOE.

7.2 Résultats de la méthodologie n°1

Grâce aux formules présentées précédemment, nous pouvons déterminer les valeurs suivantes (Tableau 41). Le tableau montre que les valeurs de DSA, DSAR et DCR ne dépendent que très peu des prélèvements AEP, seule la Sèvre Nantaise à Saint-Mesmin étant concernée. Les valeurs de DSA, DSAR et DCR calculées ici sont généralement assez proches des valeurs actuellement utilisées. Des différences notables sont cependant observées à Tiffauges (valeur calculée plus forte que valeur actuelle), et à Saint-Crespin et Remouillé (valeurs calculées moins fortes que valeurs actuelles). Ce tableau comprend par ailleurs la conversion en termes de débit spécifique (c'est-à-dire en l/s/km²) du DCR pour chacune des stations. Cette conversion indique 3 stations, sur la Sanguèze, la Petite Maine, et la Maine, pour lesquelles le DCR spécifique est bien plus faible. Cela indique un écoulement naturel très faible par rapport à la surface sur ces stations.

Tableau 41: Valeurs de DSA, DSAR et DCR théoriques déterminées avec la méthodologie n°1.

	DSA (I/s)		DSAR (I/s)		DCR (I/s)		VCN3_10 calculé
Station de référence	Actuel	Calculé	Actuel	Calculé	Actuel	Calculé	spécifique (l/s/km²)
Sèvre Nantaise à Saint-Mesmin	300	336	170	252	150	168	0,39
Sèvre Nantaise à Tiffauges	330	595	270	446	200	297	0,36
Sèvre Nantaise à Nantes	1150	1172	900	879	570	586	0,25
Moine à Saint-Crespin-sur-Moine	450	260	310	195	250	130	0,36
Sanguèze à Tillières	15	7	10	5	5	4	0,04
Petite Maine à Saint-Georges-de- Montaigu	50	17	20	13	10	9	0,05
Maine à Remouillé	270	87	110	65	90	43	0,07

Le nombre de jours par an sous les différents seuils est présenté dans le Tableau 42. Ce tableau indique un passage très fréquent sous certains seuils actuels, notamment la Moine, la Petite Maine et la Maine.

Tableau 42: Nombre de jours par an sous les seuils DSA, DSAR et DCR (nombre de jours moyen par an pour lesquels le débit désinfluencé se situe sous le seuil pour la période 2008-2020) avec la méthodologie n°1

	Nombre de jours par an sous*								
Station de référence	DS	A	DS <i>A</i>	AR .	DCR				
	Actuel	Calculé	Actuel	Calculé	Actuel	Calculé			
Sèvre Nantaise à Saint-Mesmin	46	53	5	33	1	5			
Sèvre Nantaise à Tiffauges	2	42	0	18	0	0			
Sèvre Nantaise à Nantes	42	44	20	18	0	0			
Moine à Saint-Crespin-sur-Moine	120	78	95	40	74	0			
Sanguèze à Tillières	66	26	42	11	9	1			
Petite Maine à Saint-Georges-de- Montaigu	78	24	31	11	5	3			
Maine à Remouillé	95	28	44	14	31	0			

^{*} Hydrologie désinfluencée sur la période 2008 – 2020

Au regard des valeurs obtenues, on observe que :

- les valeurs obtenues pour la Sèvre Nantaise et la Moine semblent adaptées,
- les valeurs obtenues pour la Sanguèze, la Petite Maine et la Maine sont très proches pour les 3 seuils. Cela peut mener à une efficience faible des premières mesures de restrictions, dont la mise en application pourrait ne pas précéder suffisamment des passages sous les seuils les plus restrictifs. Ces 3 stations sont par ailleurs particulières, leurs débits spécifiques étant très faibles.

7.3 Résultats de la méthodologie n°2

Grâce aux formules présentées précédemment, nous pouvons déterminer les valeurs suivantes (Tableau 43). Comparativement à la méthodologie n°1, les résultats obtenus avec cette seconde méthodologie donnent :

- des résultats similaires pour le DCR,
- des valeurs de DSAR et DSA plus faibles pour la Sèvre Nantaise et la Moine,
- des valeurs de DSAR et DSA un peu plus importantes pour les cours d'eau à faible débits spécifiques d'étiage : Sanguèze, Petite Maine et Maine.

Tableau 43: Valeurs de DSA, DSAR et DCR théoriques déterminées avec la méthodologie n°2.

	DSA (I/s)		DSAR (I/s)		DCR	VCN3_10	
Station de référence	Actuel	Proposé	Actuel	Proposé	Actuel	Proposé	spécifique (l/s/km²)
Sèvre Nantaise à Saint-Mesmin	300	290	170	200	150	170	0,39
Sèvre Nantaise à Tiffauges	330	540	270	360	200	300	0,36
Sèvre Nantaise à Nantes	1150	1 000	900	690	570	590	0,25
Moine à Saint-Crespin-sur-Moine	450	200	310	150	250	130	0,36
Sanguèze à Tillières	15	15	10	10	5	5	0,04
Petite Maine à Saint-Georges-de- Montaigu	50	50	20	20	10	10	0,05
Maine à Remouillé	270	115	110	70	90	45	0,07

Le nombre de jours par an sous les différents seuils est présenté dans le Tableau 44. Ce tableau indique un passage très fréquent sous certains seuils actuels, notamment la Moine, la Petite Maine et la Maine.

Tableau 44: Nombre de jours par an sous les seuils DSA, DSAR et DCR (nombre de jours moyen par an pour lesquels le débit désinfluencé se situe sous le seuil pour la période 2008-2020) avec la méthodologie n°2

	Nombre de jours par an sous*								
Station de référence	DS	A	DSA	AR	DCR				
	Actuel	Calculé	Actuel	Calculé	Actuel	Calculé			
Sèvre Nantaise à Saint-Mesmin	46	44	5	14	1	5			
Sèvre Nantaise à Tiffauges	2	34	0	6	0	0			
Sèvre Nantaise à Nantes	42	31	20	5	0	0			
Moine à Saint-Crespin-sur-Moine	120	43	95	7	74	0			
Sanguèze à Tillières	66	66	42	42	9	9			
Petite Maine à Saint-Georges-de- Montaigu	78	78	31	31	5	5			
Maine à Remouillé	95	47	44	17	31	0			

^{*} Hydrologie désinfluencée sur la période 2008 – 2020

À retenir :

Après concertation du COTECH, il est proposé de mettre à disposition des services de l'État les conclusions des deux méthodologies. Ces conclusions pourront venir alimenter la réflexion dans le cadre d'une future révision de l'arrêté cadre arrêté « sécheresse » inter-préfectoral du 31 juillet 2023.

Par ailleurs, le COTECH suggère de prendre en compte les données du réseau ONDE pour la prise de mesures de restrictions / limitations lorsque les services de l'État auront proposé une méthodologie.

Les valeurs de débits de gestion de crise obtenues par les deux méthodes proposées ci-dessus permettent par ailleurs d'assurer une meilleure cohérence de ceux-ci avec les DOE.

8 Programme d'actions

8.1 Synthèse du programme d'actions

Fort des connaissances acquises et des lacunes identifiées dans le cadre de l'étude HMUC, un programme d'actions a été défini autour des axes suivants :

- <u>Amélioration de la connaissance et prise en compte des avancées scientifiques pour la construction du futur PTGE</u>
 - Inventaire des prélèvements → un stage à venir de mai à août 2024
 - Inventaire des plans d'eau
 - o Rejets STEPS
 - Suivi écoulements et thermie, données météorologiques
 - Hydrométrie en amont et aval du complexe Ribou Verdon
- Information | Sensibilisation sur les résultats de l'étude HMUC et le changement climatique
 - Situation hydrologique sur le BV de la Sèvre Nantaise
 - Réunions et campagnes de sensibilisation (conclusions étude HMUC, changement climatique, etc.)
- Gouvernance | Organisation pour suivre et évaluer la mise en œuvre de l'étude HMUC et construire le futur PTGE
 - Commission « Gestion quantitative » à l'échelle du bassin versant de la Sèvre Nantaise
 - Groupe de travail restreint d'experts

Le tableau 45 présente le contenu du programme d'actions partagé avec le Comité Technique de l'étude HMUC.

Les points suivants détaillent l'intérêt de certaines actions identifiées dans le programme.

Tableau 45: Programme d'actions issu de l'étude HMUC

Intitulé	Descriptif	Masses d'eau / bassin versant	Maître d'Ouvrage	Régie / Prestataire	Période
	AMELIORATION DE LA CONNAISSANCE				
Inventaire et mise en conformité des prélèvements (dont plans d'eau et forages d'irrigation, plans d'eau de loisirs et de pisciculture)	Inventaire et description des forages et plans d'eau d'irrigation, des plans d'eau de loisirs (hors assainissement et pluvial) et de pisciculture en matière de caractéristiques physiques (surface, volume, etc.), de modalités de remplissage, de connexion / déconnexion avec le milieu naturel. Inventaire et description en matière de caractéristiques physiques (surface, volume, etc.), de modalités de remplissage, de connexion / déconnexion avec le milieu naturel. Environ 1 100 plans d'eau d'irrigation estimés dans l'étude HMUC. Mise en œuvre à la suite de cette action d'une opération de mise en conformité des plans d'eau, de contournement et/ou d'effacement des plans d'eau.	Unités de gestion en risque de déficit	EPTB SN en partenariat avec DDT(M) et Chambres Agri)	Stage commun / CDD	2024-2026
Inventaire et mise en conformité des plans d'eau de loisirs	Inventaire et description des plans d'eau de loisirs (hors assainissement et pluvial) en matière de caractéristiques physiques (surface, volume, etc.), de modalités de remplissage, de connexion / déconnexion avec le milieu naturel.	Unités de gestion en risque de déficit	EPTB SN en partenariat avec DDT(M)	Stage commun / CDD	2024-2026
Inventaire et mise en conformité des plans d'eau de pisciculture	Inventaire et description des plans d'eau de loisirs de pisciculture en matière de caractéristiques physiques (surface, volume, etc.), de modalités de remplissage, de connexion / déconnexion avec le milieu naturel.	Unités de gestion en risque de déficit	EPTB SN en partenariat avec DDT(M)	Stage commun / CDD	2024-2026
Amélioration de la connaissance du fonctionnement hydrologique	Amélioration de la connaissance de l'hydrologie, infiltration dans les sols, drainage, entrée-sortie ESU et ESO – Impact des zones humides sur l'hydrologie- Capacité du SBV ou unité de gestion à retrouver de l'hydraulicité, identification des actions les plus efficientes. Action à flécher sur les UG faisant l'objet d'un inventaire des plans d'eau et prélèvements	Tout le BV de la Sèvre Nantaise ou unités de gestion en risque de déficit	EPTB SN	Prestation	2026

Intitulé	Desc	criptif	Masses d'eau <i>l</i> bassin versant	Maître d'Ouvrage	Régie / Prestataire	Période
Etude "Impact Quantitati barrage du Longeron"	déhite d'objectife d'étiage par l'étude L	gnificatif sur les débits en aval du férence de Tiffauges. La définition des HMUC, récemment portée par l'EPTB on pour mener une réflexion globale Longeron, afin de garantir mettre en s suffisants tout au long de l'année	La Sèvre de Mallièvre à la Moine	Mauges Communauté (+ partenariat avec DDT49 et DDTM85, ETPB SN)	Prestation	2024-2026
Suivi des écoulements	Réalisation d'un suivi ONDE complém améliorer la connaissance et diffusion ainsi que des préfectures (en lien avec ouverture de ce suivi à des contribute de suivi de cyanobactéries) avec mise d'enregistrement des données,	dentaire au réseau national pour des résultats auprès du grand public c les comités sécheresse). Une urs externes est envisagé (cf. réseau e en place d'un outils de visualisation,	Petite Maine, Autres affluents	partenariat à définir : Fédés de Pêche,	Régie + partenariats fédés de pêches	2024-2026
Suivi thermique	Acquisition de sonde et suivi thermiqu Sèvre Nantaise, avec définition d'un p suivi + bancarisation des données	e en 10 points du bassin versant de la rotocole de suivi et des objectifs de	Tout le bassin Sèvre Nantaise (dont secteur à enjeu biodiversité)	EPTB SN	Fourniture (achat sondes)+ Régie	2024-2026

Intitulé	Descriptif	Masses d'eau / bassin versant	Maître d'Ouvrage	Régie <i>l</i> Prestataire	Période
	GESTION QUANTITATIVE				
Projet de Territoire pour la Gestion de l'Eau (PTGE)	Sur la base des conclusions de l'étude HMUC, Rédaction d'une feuille de route PTGE et émergence d'une démarche PTGE (dont étude socio-économique non abordée dans l'étude HMUC) visant à assurer le partage de l'eau dans le respect des besoins des milieux naturels et des usages	Tout le bassin Sèvre Nantaise	EPTB SN	Prestataires	2025-2026
Révision de l'arrêté cadre sécheresse	Révision de l'arrêté cadre sécheresse du bassin versant de la Sèvre Nantaise pour porter l'obligation, à la charge des propriétaires, de prouver le statut de déconnexion des plans d'eau d'irrigation (cf. démarche en cours portée par la DDTM 44) Environ 1 100 plans d'eau d'irrigation estimés dans l'étude HMUC. Confirmer la généralisation de l'obligation de mettre des compteurs d'eau pour les prélèvements avec un pas de temps plus fin qu'un rythme annuel.	Tout le bassin Sèvre Nantaise	DDT(M)		2025-2027
	INFORMATION / SENSIBILISATION				
Création d'une page web « situation hydrologique sur le BV de la Sèvre Nantaise »	Création d'une page web sur le site https://www.sevre-nantaise.com/ permettant de suivre la situation hydrologique sur les trois derniers mois (à, partir des données de l'Hydroportail) + situation du bv / arrêtés sécheresse. Comparaison des débits mesurées au droit des stations hydrométriques avec les valeurs de référence (moyenne mensuelle, module, QMNA5, VCN10 (2), etc.) + présentation du suivi ONDE national et complémentaire Y intégrer les prévisions de la plateforme PREMHYCE (https://sunshine.inrae.fr/app/premhyce) ?	Tout le bassin Sèvre Nantaise	EPTB SN	Régie	2024
Réunions de sensibilisation à destination du grand public en lien avec le changement climatique	Réalisation de trois réunions publiques sur le bassin versant en partenariat avec le GIEC PdL pour sensibiliser à l'adaptation au changement climatique	Tout le bassin Sèvre Nantaise	EPTB SN	Prestataire (GIEC PdL)	2024-2026
Campagne de sensibilisation à destination du grand public	En lien avec les conclusions de l'étude HMUC, réalisation d'une campagne de sensibilisation « grand public » aux risques de sécheresses et aux économies d'eau.	Tout le bassin Sèvre Nantaise	EPTB SN	Prestataire	2024
Campagne de sensibilisation à destination des propriétaires de plan d'eau	Réalisation d'une campagne de sensibilisation auprès des propriétaires de plans d'eau quant au cadre réglementaire et aux bonnes pratiques	Tout le bassin Sèvre Nantaise	EPTB SN (+ partenariat avec DDT(M))	Prestataire	2025

Intitulé	Descriptif	Masses d'eau / bassin versant	Maître d'Ouvrage	Régie <i>l</i> Prestataire	Période
GOUVERNANCE / ORGANISATION					
Création d'une commission « Gestion quantitative » à l'échelle du bassin versant de la Sèvre Nantaise	Création d'une commission « Gestion quantitative » à l'échelle du bassin versant de la Sèvre Nantaise permettant de suivre et d'orienter l'avancement du programme d'actions	Tout le bassin Sèvre Nantaise	EPTB SN	Régie	A partir de 2024
Création d'un groupe de travail restreint d'expert à l'échelle du bassin versant de la Sèvre Nantaise	Création d'un groupe de travail restreint d'expert permettant de faire des propositions, d'étudier et d'échanger sur actions / projets techniques	Tout le bassin Sèvre Nantaise	EPTB SN	Régie	A partir de 2024
Animer le volet GQRE du programme d'actions, la commission "gestion quantitative" et le groupe de travail restreint	1 chargé de mission GQRE en charge du volet gestion quantitative et du PTGE	Tout le bassin Sèvre Nantaise	EPTB SN	Régie	A partir de 2024

8.2 Compléments de connaissances

Cette étude a été réalisée en tenant compte de l'état actuel des connaissances sur le bassin versant. Comme on a pu le voir, certaines connaissances ont pu s'avérer limitantes dans les travaux effectués. Ces limites ont parfois pu être comblées en effectuant des hypothèses qui pour certaines étaient fortes, et certaines limites ont mené à négliger certains aspects. Par conséquent, nous présentons ici des suggestions de compléments de connaissances qui pourraient être acquises afin d'éclairer la prise de décision sur le partage de l'eau sur le bassin de la Sèvre Nantaise.

8.2.1 Mesures de débits

Il s'est avéré que les débits entrants en amont des retenues de Ribou et Verdon n'étaient pas connus. Il pourrait être opportun de mettre en place de manière pérenne une station hydrométrique en amont de ces retenues.

Des jaugeages ponctuels pourraient également être envisagés. De manière plus légère, il pourrait être utile que les observations d'assecs soient bancarisées.

8.2.2 Données sur les prélèvements et rejets

La présente étude a été effectuée en utilisant des données d'usage entre 2008-2020. Il serait bien évidemment utile d'étendre les données d'usage utilisées, comme cela a été suggéré durant l'étude. Cela n'a malheureusement pas été rendu possible en raison des échéances du projet et des efforts que cela représentait.

Dans un premier temps, il pourrait être utile de mobiliser les données postérieures à 2020 si elles sont disponibles dans les bases de données BNPE et IREP par exemple. Par ailleurs, il pourrait être intéressant d'accéder et mettre en forme des archives sur les données d'usages antérieures à 2008. Cela représente néanmoins un effort conséquent.

La mise en œuvre de l'étude HMUC a nécessité la mobilisation de nombreux acteurs possédant des données qui étaient soit absentes des bases de données BNPE ou IREP, soient plus détaillées. Les travaux postérieurs bénéficieraient grandement d'une centralisation des données les plus détaillées auprès de l'EPTB Sèvre Nantaise par exemple. Les fournisseurs d'eau potable pour les consommations, les rendements et les prélèvements (Vendée-Eau, Cholet et Mauges Co , Atlantic'eau, Syndicat du val de Loire 79, SMEG et Nantes métropole notamment), ou bien AELB et des DDT concernant les rejets de STEPs.

En ce qui concerne les rejets de STEPs. Il a été observé des différences selon l'origine des données et le pas de temps. Il serait nécessaire de comprendre les différences. Par ailleurs, la présente étude a permis de mettre en exergue que les rejets annuels ne correspondent pas aux consommations, et il

semble que la pluie ait un impact sur les volumes rejetés, ce qui est à investiguer (voir par exemple sur la station de la Dignée, la figure 47 du rapport de phase 1).

Enfin, il pourrait être utile de disposer de données des compteurs d'eau des plus gros irrigants. Cela pourrait en effet bénéficier grandement à une meilleure représentation des prélèvements pour l'irrigation sur la bassin versant via la modélisation, notamment via une meilleure connaissance de la répartition temporelle de ces prélèvements.

8.2.3 Compléments d'information sur les plans d'eau

Les questionnements sur le fonctionnement des plans d'eau ont été nombreux lors de la phase 2 du projet. S'il est illusoire de disposer d'une connaissance fine de l'ensemble des plus de 10 000 plans d'eau du bassin, il pourrait être utile de concentrer ses efforts dans un premier temps sur les plans d'eau les plus importants, comme par exemple les plans d'eau de plus de 10 ha. En effet, ceux-ci peuvent avoir une influence forte sur les cours d'eau secondaires.

Ces connaissances supplémentaires pourraient notamment concerner l'acquisition de connaissance générales, telles que le mode de remplissage, l'usage, la capacité et le caractère connecté ou non du plan d'eau aux eaux de surface.

8.2.4 Compléments sur les milieux

Il serait intéressant de disposer de mesures de la température de l'eau sur le bassin (sur au minimum une dizaine de points). En effet, cela permettrait la mise en place d'un modèle de température de l'eau et donc de mieux estimer l'impact du changement climatique sur les milieux.

8.2.5 Données météorologiques

Au 1^{er} janvier 2024, Météo-France a mis à disposition un nombre important de données météorologiques, dont les données SAFRAN utilisées par INRAE dans ce projet. Il serait intéressant que l'EPTB récupère et bancarise ces données régulièrement.

8.2.6 Sensibilisation et vulgarisation

L'établissement de fiches synthétiques (déjà disponible pour la phase 2, à venir pour les deux phases suivantes), constitue un premier pas vers la sensibilisation à la gestion de l'eau auprès du plus grand nombre sur le bassin. Cet effort pourrait être poursuivi par des actions supplémentaires, telles que des réunions publiques, ou des campagnes de sensibilisation auprès de personnes ciblées (propriétaires de plans d'eau ou monde agricole, par exemple).

8.2.7 Prise en compte des avancées de la connaissance scientifique

Dans les années futures, les connaissances scientifiques vont avancer. Même si le projet HMUC a pu disposer d'un modèle hydrologique faisant référence en France, et de données de projections climatiques issues du projet Explore2 qui sera rendu en juin 2024 (données les plus récentes, donc), il est évident que les connaissances vont progresser.

En particulier, on peut noter les possibles avancées suivantes :

- Amélioration de la modélisation hydrologique, via i) une meilleure prise en compte des flux souterrains, ii) une meilleure représentation des interactions entre usages et ressources, et iii) une évaluation de l'impact du drainage agricole sur les débits des rivières. Il est cependant difficile de savoir à quelle échéance ces améliorations seront disponibles.
- Utilisation de projections climatiques plus récentes; comme les hydrologues, les climatologues améliorent leurs modèles et proposent régulièrement des projections climatiques mises à jour, et donc réputées plus robustes. Ainsi, dans quelques années de nouvelles projections seront disponibles.

9 Conclusions

Après une première phase de constitution de la base de données, une seconde phase de diagnostic et d'état des lieux, une troisième phase de prospective et de détermination des besoins des milieux naturels, la quatrième et dernière phase de l'étude HMUC Sèvre Nantaise consistait à **proposer une méthodologie de calcul et des valeurs de plusieurs grandeurs** :

- des débits objectif d'étiage (DOE) et des volumes prélevables (VP), correspondant à la période de basses eaux,
- des volumes potentiellement disponibles (VPD), correspondant à la période de hautes eaux,
- des débits de gestion de crise (DSA, DSAR, DCR).

Concernant les VP et les VPD, conformément à la demande de la CLE, il a été procédé à l'établissement de deux scénarios contrastés, l'un appelé « A » favorisant les milieux, et l'autre appelé « B » favorisant les usages. Ces deux scénarios ont été analysés au regard du changement climatique et de leur impact sur les milieux. Par ailleurs, de nombreux échanges avec le COTECH ont mené à leur ajustement au cours de l'étude.

Concernant les débits de gestion de crise, suite à de nombreux échanges avec le COTECH, deux méthodologies différentes ont été mises en œuvre, et ont mené à l'établissement de deux jeux de valeurs.

Enfin, il est important de souligner que **la CLE s'est positionnée pour s'engager dans une démarche PTGE** qui s'appuiera sur les productions de l'étude HMUC, en particulier les valeurs arrêtées par la CLE en termes de gestion structurelle et conjoncturelle mentionnées ci-dessus.

10 Références

Agence de l'Eau Loire-Bretagne, Analyses Hydrologie – Milieux – Usage – Climat (HMUC). Guide et recommandations méthodologiques. Version 1.1. Septembre 2023.

Ministère de la Transition Ecologique et de la Cohésion des Territoires, Guide circulaire de mise en oeuvre des mesures de restriction des usages de l'eau en période de sécheresse. Mai 2023.

Santos, L., Tallec, G., Tales, E., Bluche, A., You B., Thomas, A., Mounereau, L. et Thirel, G. Étude HMUC: Rapport Phase 3. Définition des débits biologiques - Analyses prospectives: besoins futurs et changement climatique. 441 p https://hal.inrae.fr/hal-04355199

Thirel, G., Santos, L., Thomas, A., Mounereau, L. CR du COTECH 7, 13/06/2023.

11 Annexes

11.1 Calculs initiaux proposés avant le COTECH 10 du 13/02/2024

Dans cette annexe, on présente les différences d'ordre méthodologique des calculs effectués pour le COTECH 10, par rapport aux calculs effectués pour le COTECH 11. Les éléments non présentés ici sont réputés inchangés entre les deux approches.

Pour le COTECH 10, **trois valeurs de DOE, incluses dans la gamme de débits environnementaux, avaient été évaluées au regard du VP.** Elles sont calculées de la manière suivante :

- $DOE_{min} = min(Q_{env,min}, QMN5_{desinf})$
- $DOE_{moy} = min(Q_{env,moy}, QMN5_{desinf})$
- $DOE_{max} = min(Q_{env,max}, QMN5_{desinf})$

Concernant les calculs des VPM (pour les VP bas débits donc), la totalité des pertes du réseau AEP avaient été prise en compte, ainsi que les débits réservés.

Concernant les VP hivernaux, on avait évalué l'ensemble des plafonds de prélèvement (0.2, 0.4 et 0.6 fois le module).

Enfin, concernant les débits de crise, on avait appliqué les formulations suivantes :

- Pour le DCR, on avait calcule : DOE + Demande AEP + Demande Non Réglementée
- Pour le DSAR, on avait calculé : 1,1*DOE + Demande_AEP + Demande_Non_Réglementée + 0,8*Demande_industrielle
- Pour le DSA, on avait calculé : 1,1*DOE + Demande_AEP + Demande_Non_Réglementée + Demande_industrielle + Demande_irrig

Dans ces formules, les demandes en eau concernaient les demandes en amont des points de gestion. Par ailleurs, les trois valeurs de DOE susmentionnées avaient été testées. Des tests supplémentaires ont été effectués, et ceux-ci ainsi que les résultats des formulations ci-dessus auraient dû être présentés en COTECH. On ne présente ici que les résultats pour les formulations ci-dessus par souci de concision.

11.2 Valeurs obtenues avec les calculs initiaux proposés avant le COTECH 10 du 13/02/2024

Tableau 46: Valeurs de DOE

				Valeu	rs mensuell	es de DOE (l/s)		
UG	Valeur	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov
6)	DOEmax	1 839	1 268	450	450	274	208	230	747
Sèvre amont	DOEmoy	1 410	1 268	325	325	274	208	230	747
amont	DOEmin	940	940	200	200	200	200	230	747
C }	DOEmax	3 000	2 698	580	580	567	428	477	1 559
Sèvre moyenne 1	DOEmoy	2 000	2 000	390	390	390	390	477	1 559
moyenne 1	DOEmin	1 000	1 000	200	200	200	200	477	1 000
C)	DOEmax	4 040	4 012	900	900	843	655	741	2 657
Sèvre moyenne 2	DOEmoy	2 765	2 765	620	620	620	620	741	2 657
moyenne z	DOEmin	1 490	1 490	340	340	340	340	741	1 490
	DOEmax	5 950	5 510	1 520	1 520	1 073	806	957	4 158
Sèvre aval	DOEmoy	4 125	4 125	1 050	1 050	1 050	806	957	4 125
	DOEmin	2 300	2 300	580	580	580	580	957	2 300
	DOEmax	341	232	124	73	45	33	44	179
Ouin	DOEmoy	341	232	124	73	45	33	44	179
	DOEmin	230	230	124	73	45	33	44	179
	DOEmax	417	291	162	99	69	58	68	256
Moine 1	DOEmoy	360	291	158	99	69	58	68	256
	DOEmin	150	150	75	75	69	58	68	150
	DOEmax	1 160	818	410	248	177	156	183	727
Moine 2	DOEmoy	920	818	285	248	177	156	183	727
	DOEmin	580	580	160	160	160	156	183	580
	DOEmax	249	118	57	27	17	13	20	216
Sanguèze	DOEmoy	249	118	57	27	17	13	20	216
	DOEmin	180	118	50	27	17	13	20	180
Grande	DOEmax	472	262	123	59	32	20	27	183
Maine	DOEmoy	375	262	123	59	32	20	27	183
	DOEmin	250	250	80	59	32	20	27	183
Petite	DOEmax	357	195	89	42	25	15	25	217
Maine	DOEmoy	357	195	89	42	25	15	25	217
	DOEmin	300	195	89	42	25	15	25	217
	DOEmax	1 270	961	443	212	127	81	116	868
Maine	DOEmoy	950	950	330	212	127	81	116	868
	DOEmin	630	630	190	190	127	81	116	630

Tableau 47: Valeurs de VPM (basses eaux)

				٧	aleurs me	nsuelles de	e VPM (m³	·)		
UG	Valeur	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov	Total
C },	VPMmin	0	0	766 195	29 730	0	0	0	0	795 925
Sèvre amont	VPMmoy	1 111 968	0	1 090 195	364 530	0	0	0	0	2 566 693
amont	VPMmax	2 330 208	879 319	1 414 195	699 330	198 737	21 773	0	0	5 543 562
C }	VPMmin	2 369 088	0	1 786 925	952 707	0	0	0	0	5 108 720
Sèvre moyenne 1	•			1 955 405		474 077	99 274	0	0	9 375 006
moyenne 1	VPMmax	4 934 650	3 664 855	2 123 885	1 300 899	784 236	569 981	0	1 449 446	14 827 952
C \	VPMmin	2 346 278	0	899 424	210 790	0	0	0	0	3 456 492
Sèvre moyenne 2	VPMmoy	2 438 035	1 470 174	808 704	451 846	122 403	0	0	0	5 291 162
moyenne z	VPMmax	2 269 555	1 568 739	717 984	458 006	317 123	223 430	0	1 195 690	6 750 527
	VPMmin	492 739	0	279 936	0	0	0	0	0	772 675
Sèvre aval	VPMmoy	1 088 899	338 818	480 557	0	0	0	0	86 573	1 994 847
	VPMmax	1 505 952	954 850	593 309	297 570	0	0	0	1 082 419	4 434 100
	VPMmin	0	0	0	0	0	0	0	0	0
Ouin	VPMmoy	0	0	0	0	0	0	0	0	0
	VPMmax	288 230	4 553	0	0	0	0	0	0	292 783
	VPMmin	0	0	0	0	0	0	0	0	0
Moine 1	VPMmoy	148 262	0	11 146	0	0	0	0	0	159 408
	VPMmax	692 582	378 726	224 986	62 942	0	0	0	275 011	1 634 247
	VPMmin	0	0	109 123	0	0	0	0	0	109 123
Moine 2	VPMmoy	472 781	0	421 978	0	0	0	0	0	894 759
	VPMmax	809 741	259 269	532 138	171 953	46 336	0	0	105 494	1 924 931
	VPMmin	0	0	0	0	0	0	0	0	0
Sanguèze	VPMmoy	0	0	0	0	0	0	0	0	0
	VPMmax	179 107	0	16 848	0	0	0	0	92 794	288 749
Grande	VPMmin	0	0	0	0	0	0	0	0	0
Maine	VPMmoy	251 942	0	0	0	0	0	0	0	251 942
	VPMmax	575 942	31 337	112 493	0	0	0	0	0	719 772
Petite	VPMmin	0	0	0	0	0	0	0	0	0
Maine	VPMmoy	0	0	0	0	0	0	0	0	0
J	VPMmax	148 781	0	0	0	0	0	0	0	148 781
		1 351 469	0	0	0	0	0	0	0	1 351 469
Maine	•	1 928 966	30 266	291 859	0	0	0	0	0	2 251 091
	VPMmax	2 285 626	856 017	542 246	57 853	0	0	0	616 118	4 357 860

Tableau 48: Valeurs de VP (basses eaux)

110			Valeurs me	ensuelles de	volumes n	on régleme	entés (m³)		
UG	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov	Total
Sèvre amont	400 087	451 340	508 409	513 974	399 539	283 054	223 471	210 841	2 990 715
Sèvre moyenne 1	288 463	283 641	340 618	349 259	262 539	190 652	131 168	133 692	1 980 032
Sèvre moyenne 2	108 147	125 672	150 463	156 317	122 181	90 717	73 127	62 956	889 580
Sèvre aval	36 865	44 145	46 684	44 205	34 028	24 650	18 071	23 813	272 461
Ouin	70 266	80 908	94 484	93 869	72 971	51 856	44 250	40 494	549 098
Moine 1	108 319	95 323	102 687	93 911	64 263	54 541	58 998	75 493	653 535
Moine 2	167 997	187 240	202 368	191 889	143 806	122 624	119 416	122 741	1 258 081
Sanguèze	141 435	127 568	136 955	127 278	97 045	72 517	76 780	79 880	859 458
Grande Maine	85 480	85 913	102 688	103 770	66 537	51 331	47 727	49 029	592 475
Petite Maine	120 952	120 120	131 924	120 983	77 799	60 112	89 493	108 528	829 911
Maine	234 399	237 752	261 723	237 719	145 770	114 989	129 840	172 210	1 534 402

Tableau 49: Valeurs de VPM (basses eaux) pour les UG pour lesquelles une solidarité amont-aval est considérée

				,	Valeurs mer	nsuelles de	e VPM (m³	·)		
UG	Valeur	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov	Total
_,	VPMmin	2 369 088	0	1 639 524	694 010	0	0	0	0	4 702 622
Sèvre	VPMmoy	3 849 120	1 870 327	1 786 219	912 778	392 710	99 274	0	0	8 910 428
moyenne 1	VPMmax	4 664 492	3 335 718	1 886 611	1 164 574	658 760	494 265	0	1 449 446	13 653 866
- >	VPMmin	1 362 246	0	756 524	267 703	0	0	0	0	2 386 473
Sèvre	VPMmoy	1 947 005	949 849	831 611	379 682	116 190	0	0	0	4 224 337
moyenne 2	VPMmax	2 306 852	1 626 634	882 998	508 566	252 371	170 574	0	966 576	6 714 571
	VPMmin	1 476 772	0	570 237	201 784	0	0	0	0	2 248 793
Sèvre aval	VPMmoy	1 579 929	859 142	626 835	286 189	87 580	0	0	86 573	3 526 248
	VPMmax	1 738 812	1 226 091	665 568	383 336	190 227	128 572	0	1 311 533	5 644 139

Tableau 50: Valeurs de VP (basses eaux) pour les UG pour lesquelles une solidarité amont-aval est considérée

110	\/-1				Valeurs m	ensuelles d	le VP (m³)			
UG	Valeur	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov	Total
-,	VPmin	2 269 140	0	1 470 448	503 964	0	0	38 153	71 080	4 352 785
Sèvre	VPmoy	3 749 172	1 772 853	1 617 143	722 732	270 616	51 438	38 153	71 080	8 293 187
moyenne 1	VPmax	4 564 544	3 238 244	1 717 535	974 528	536 666	446 429	38 153	1 520 526	13 036 625
- \	VPmin	1 348 671	0	686 383	178 562	0	0	8 156	44 741	2 266 513
Sèvre	VPmoy	1 933 430	912 996	761 470	290 541	57 953	0	8 156	44 741	4 009 287
moyenne 2	VPmax	2 293 277	1 589 781	812 857	419 425	194 134	142 346	8 156	1 011 317	6 471 293
	VPmin	1 695 404	208 253	756 820	377 425	172 082	185 679	215 170	248 133	3 858 966
Sèvre aval	VPmoy	1 798 561	1 067 395	813 418	461 830	259 662	185 679	215 170	334 706	5 136 421
	VPmax	1 957 444	1 434 344	852 151	558 977	362 309	314 251	215 170	1 559 666	7 254 312

Tableau 51: Valeurs de VP (hautes eaux)

	Débit		Valeurs	mensuelles de	VP hivernaux (m³)	
UG	plancher	Jan	Fév	Mar	Nov	Déc	Total
C }	0.2 Module	1 722 662	1 391 856	1 169 251	720 850	1 333 386	6 338 005
Sèvre amont	0.4 Module	3 283 748	2 618 504	2 142 202	1 314 518	2 550 300	11 909 272
amont	0.6 Module	-	-	-	-	-	-
6)	0.2 Module	1 504 616	1 305 558	1 151 473	606 064	1 111 457	5 679 168
Sèvre	0.4 Module	2 919 255	2 486 499	2 123 200	1 090 578	2 104 900	10 724 432
moyenne 1	0.6 Module	-	-	-	-	-	-
	0.2 Module	769 919	691 638	535 307	395 619	684 142	3 076 625
Sèvre	0.4 Module	1 465 556	1 274 162	1 090 379	790 561	1 283 354	5 904 012
moyenne 2	0.6 Module	-	-	-	-	-	-
	0.2 Module	415 988	554 021	423 214	386 403	389 306	2 168 932
Sèvre aval	0.4 Module	908 901	967 798	876 780	630 040	855 396	4 238 915
	0.6 Module	-	-	-	-	-	-
	0.2 Module	373 971	307 082	258 502	182 262	299 200	1 421 017
Ouin	0.4 Module	711 763	578 100	473 923	331 167	574 552	2 669 505
	0.6 Module	-	-	-	-	-	-
	0.2 Module	440 781	370 432	305 512	209 274	350 931	1 676 930
Moine 1	0.4 Module	843 793	705 039	552 892	383 871	669 790	3 155 385
	0.6 Module	-	-	-	-	-	-
	0.2 Module	729 003	655 366	528 754	377 655	608 780	2 899 558
Moine 2	0.4 Module	1 384 164	1 241 311	944 768	691 229	1 147 436	5 408 908
	0.6 Module	-	-	-	-	-	-
	0.2 Module	468 604	382 526	242 861	279 872	392 720	1 766 583
Sanguèze	0.4 Module	898 570	728 692	437 550	528 924	757 793	3 351 529
	0.6 Module	1 288 406	1 044 699	594 609	747 063	1 106 105	4 780 882
Grande	0.2 Module	562 718	454 606	366 969	281 216	465 919	2 131 428
Maine	0.4 Module	1 085 524	851 666	680 076	510 242	890 815	4 018 323
Widnie	0.6 Module	1 567 502	1 211 299	940 393	710 853	1 281 578	5 711 625
Petite	0.2 Module	624 189	497 960	378 267	386 746	492 288	2 379 450
Maine	0.4 Module	1 225 645	944 000	680 210	726 791	960 380	4 537 026
manic	0.6 Module	1 783 489	1 334 822	908 746	1 034 642	1 409 665	6 471 364
	0.2 Module	1 133 165	961 584	749 023	589 753	954 011	4 387 536
Maine	0.4 Module	2 202 801	1 815 880	1 351 527	1 131 230	1 861 245	8 362 683
	0.6 Module	3 188 381	2 592 426	1 882 509	1 564 771	2 704 169	11 932 256

11.3 Évaluation des pertes / gains d'habitats au droit des stations de débits biologiques pour la période de juin à septembre

11.3.1 Comparaison au débit biologique seuil haut

Station	UG concernée	Scenario	Mois	DOE (I/s)	DOE transposé à la station bio (l/s)	Truite fario adulte	Truite fario juvénile	Chabot	Goujon	Loche Franche	Vairon	Guilde Mouille	Guilde Rive	Guilde Radier	Guilde Chenal
			juin	450	478	0 %		0 %				0 %	0 %	0 %	0 %
Sèvre Nantaise à	UG Sèvre amont	A	juil.	450	478	0 %		0 %				0 %	0 %	0 %	0 %
Montravers	OG Sevie amont	A	août	274	291	-8 %		-13 %				-2 %	0 %	-5 %	-16 %
			sept.	208	222	-12 %		-21 %				-3 %	-1 %	-8 %	-24 %
			juin	124	91			-27 %	-10 %	-17 %	-13 %				
Ouin à la Basse	UG Ouin	A	juil.	73	53			-40 %	-16 %	-28 %	-21 %				
Gelousière	OG Odill	A	août	45	33			-50 %	-22 %	-36 %	-28 %				
			sept.	33	24			-56 %	-25 %	-42 %	-32 %				
			juin	580	580	0 %		0 %		0 %		0 %	0 %		0 %
Sèvre Nantaise à	UG Sèvre moyenne 1	A	juil.	580	580	0 %		0 %		0 %		0 %	0 %		0 %
Tiffauges	OG Sevie moyenne 1	A [août	390	390	-5 %		-10 %		-5 %		0 %	1 %		-12 %
			sept.	390	390	-5 %		-10 %		-5 %		0 %	1 %		-12 %
			juin	900	936							0 %	0 %		0 %
Sèvre Nantaise à	LIC Sòura mayanna 2		juil.	900	936							0 %	0 %		0 %
Angreviers	UG Sèvre moyenne 2	Α	août	620	645							-1 %	0 %		-12 %
			sept.	620	645							-1 %	0 %		-12 %
			juin	160	211			-11 %		-5 %		-1 %	1 %		-13 %
Moine à Cholet	UG Moine 1		juil.	99	130			-23 %		-12 %		-3 %	0 %		-27 %
Wolfie a Cholet	OG Mone 1	Α	août	69	91			-31 %		-17 %		-4 %	-1 %		-36 %
			sept.	58	76			-35 %		-20 %		-5 %	-1 %		-40 %
			juin	410	390			0 %		0 %		0 %	0 %		0 %
Moine à Saint-Crespin	UG Moine 2	A	juil.	248	236			-12 %		-5 %		1 %	2 %		-15 %
wome a Same-Crespin	OG WOITE 2	_ ^ [août	177	169			-20 %		-9 %		1 %	3 %		-23 %
			sept.	156	149			-23 %		-10 %		1 %	4 %		-26 %

Station	UG concernée	Scenario	Mois	DOE (I/s)	DOE transposé à la station bio (l/s)	Truite fario adulte	Truite fario juvénile	Chabot	Goujon	Loche Franche	Vairon	Guilde Mouille	Guilde Rive	Guilde Radier	
			juin	57	53			-25 %	-2 %	-14 %	-8 %				
0	110.0		juil.	27	25			-41 %	-5 %	-25 %	-14 %				
Sanguèze à Mouzillon	UG Sanguèze	A	août	17	16			-49 %	-7 %	-30 %	-18 %				
			sept.	13	12			-54 %	-8 %	-34 %	-20 %				
			juin	123	147			-15 %		-8 %		-1 %	0 %		-18 %
Grande Maine au Pont	UO O I. M. i		juil.	59	70			-33 %		-19 %		-4 %	-2 %		-36 %
Léger	UG Grande Maine	Α	août	32	38			-45 %		-28 %		-6 %	-4 %		-49 %
			sept.	20	24			-53 %		-33 %		-8 %	-5 %		-56 %
			juin	89	89			-29 %		-16 %		-1 %	1 %		-33 %
			juil.	42	42			-44 %		-26 %		-3 %	0 %		-47 %
Petite Maine à Fromage	UG Petite Maine	A	août	25	25			-53 %		-32 %		-4 %	-1 %		-56 %
			sept.	15	15			-60 %		-38 %		-5 %	-2 %		-63 %
			juin	330	313			-9 %		-4 %		1 %	1 %		-11 %
			juil.	212	201			-20 %		-10 %		1 %	2 %		-23 %
Maine à Aigrefeuille	UG Maine	A	août	127	120			-31 %		-16 %		1 %	3 %		-34 %
			sept.	81	77			-40 %		-22 %		1 %	3 %		-43 %
			juin	325	345	-5 %		-9 %				-1 %	0 %	-3 %	-11 %
Sèvre Nantaise à	_		juil.	325	345	-5 %		-9 %				-1 %	0 %	-3 %	-11 %
Montravers	UG Sèvre amont	В	août	200	213	-13 %		-22 %				-3 %	-1 %	-8 %	-25 %
			sept.	200	213	-13 %		-22 %				-3 %	-1 %	-8 %	-25 %
			juin	124	91			-27 %	-10 %	-17 %	-13 %				
Ouin à la Basse			juil.	73	53			-40 %	-16 %	-28 %	-21 %				
Gelousière	UG Ouin	В	août	45	33			-50 %	-22 %	-36 %	-28 %				
			sept.	33	24			-56 %	-25 %	-42 %	-32 %				
			juin	390	390	-5 %		-10 %		-5 %		0 %	1 %		-12 %
Sèvre Nantaise à	_		juil.	390	390	-5 %		-10 %		-5 %		0 %	1 %		-12 %
Tiffauges	UG Sèvre moyenne 1	В	août	270	270	-10 %		-19 %		-9 %		0 %	2 %		-22 %
			sept.	270	270	-10 %		-19 %		-9 %		0 %	2 %		-22 %

Station	UG concernée	Scenario	Mois	DOE (I/s)	DOE transposé à la station bio (l/s)	Truite fario adulte	Truite fario juvénile	Chabot	Goujon	Loche Franche	Vairon	Guilde Mouille	Guilde Rive	Guilde Chenal
			juin	485	504							-1 %	0 %	-19 %
Sèvre Nantaise à	UG Sèvre moyenne 2	В	juil.	485	504							-1 %	0 %	-19 %
Angreviers	OG Sevic moyenie 2		août	340	354							-2 %	0 %	-28 %
			sept.	340	354							-2 %	0 %	-28 %
			juin	80	106			-28 %		-15 %		-4 %	0 %	-32 %
Moine à Cholet	UG Moine 1	В	juil.	80	106			-28 %		-15 %		-4 %	0 %	-32 %
World a Choice	OG MONIC 1		août	69	91			-31 %		-17 %		-4 %	-1 %	-36 %
			sept.	58	76			-35 %		-20 %		-5 %	-1 %	-40 %
			juin	160	152			-22 %		-10 %		1 %	4 %	-26 %
Moine à Saint-Crespin	UG Moine 2	В	juil.	160	152			-22 %		-10 %		1 %	4 %	-26 %
Monie a Sant-Crespin	OG MOME 2	Ь	août	160	152			-22 %		-10 %		1 %	4 %	-26 %
			sept.	156	149			-23 %		-10 %		1 %	4 %	-26 %
			juin	50	47			-28 %	-3 %	-16 %	-9 %			
Sanguèze à Mouzillon	UG Sanguèze	В	juil.	27	25			-41 %	-5 %	-25 %	-14 %			
Sangueze a Mouzillon	OG Sangueze	Ь	août	17	16			-49 %	-7 %	-30 %	-18 %			
			sept.	13	12			-54 %	-8 %	-34 %	-20 %			
			juin	80	95			-26 %		-14 %		-3 %	-1 %	-29 %
Grande Maine au Pont	LIC Cranda Maina		juil.	59	70			-33 %		-19 %		-4 %	-2 %	-36 %
Léger	UG Grande Maine	В	août	32	38			-45 %		-28 %		-6 %	-4 %	-49 %
			sept.	20	24			-53 %		-33 %		-8 %	-5 %	-56 %
			juin	89	89			-29 %		-16 %		-1 %	1 %	-33 %
Datita Maina à Français	LIC Datita Maina	_	juil.	42	42			-44 %		-26 %		-3 %	0 %	-47 %
Petite Maine à Fromage	UG Petite Maine	В	août	25	25			-53 %		-32 %		-4 %	-1 %	-56 %
			sept.	15	15			-60 %		-38 %		-5 %	-2 %	-63 %
			juin	190	180			-23 %		-11 %		1 %	3 %	-25 %
			juil.	190	180			-23 %		-11 %		1 %	3 %	-25 %
Maine à Aigrefeuille	UG Maine	В	août	127	120			-31 %		-16 %		1 %	3 %	-34 %
			sept.	81	77			-40 %		-22 %		1 %	3 %	-43 %

11.3.2 Comparaison au débit biologique moyen

Station	UG concernée	Scenario	Mois	DOE (I/s)	DOE transposé à la station bio (l/s)	Truite fario adulte	Truite fario juvénile	Chabot	Goujon	Loche Franche	Vairon	Guilde Mouille	Guilde Rive		Guilde Chenal
			juin	450	478	6 %		10 %				1 %	0 %	3 %	13 %
Sèvre Nantaise à	UG Sèvre amont	A	juil.	450	478	6 %		10 %				1 %	0 %	3 %	13 %
Montravers	OG Sevie amoni	A	août	274	291	-3 %		-5 %				-1 %	0 %	-2 %	-5 %
			sept.	208	222	-7 %		-12 %				-2 %	-1 %	-5 %	-14 %
			juin	124	91			-18 %	-7 %	-12 %	-9 %				
Ouin à la Basse	UG Ouin	A	juil.	73	53			-33 %	-13 %	-23 %	-17 %				
Gelousière	OG Odill	A	août	45	33			-45 %	-19 %	-32 %	-25 %				
			sept.	33	24			-51 %	-23 %	-38 %	-29 %				
			juin	580	580	5 %		11 %		5 %		0 %	-1 %		14 %
Sèvre Nantaise à	UG Sèvre moyenne 1	A	juil.	580	580	5 %		11 %		5 %		0 %	-1 %		14 %
Tiffauges	OG Sevie moyenne 1	^	août	390	390	0 %		0 %		0 %		0 %	0 %		0 %
			sept.	390	390	0 %		0 %		0 %		0 %	0 %		0 %
			juin	900	936							1 %	0 %		13 %
Sèvre Nantaise à	UG Sèvre moyenne 2	A	juil.	900	936							1 %	0 %		13 %
Angreviers	OG Sevie moyenne z	^	août	620	645							0 %	0 %		0 %
			sept.	620	645							0 %	0 %		0 %
			juin	160	211			0 %		0 %		0 %	0 %		0 %
Moine à Cholet	UG Moine 1	A	juil.	99	130			-13 %		-7 %		-2 %	-1 %		-15 %
Wollie a Cholet	OG WOME 1	^	août	69	91			-23 %		-13 %		-3 %	-1 %		-26 %
			sept.	58	76			-27 %		-15 %		-4 %	-2 %		-30 %
			juin	410	390			10 %		4 %		-1 %	-2 %		12 %
Moine à Saint-Crespin	UG Moine 2	A	juil.	248	236			-4 %		-2 %		0 %	1 %		-4 %
wome a Samt-Crespin	OG WOME 2		août	177	169			-12 %		-6 %		1 %	2 %		-14 %
			sept.	156	149			-15 %		-7 %		1 %	2 %		-17 %
			juin	57	53			-16 %	-2 %	-9 %	-5 %				
Conquère à Mourilles	IIC Conquèzo		juil.	27	25			-34 %	-4 %	-20 %	-12 %				
Sanguèze à Mouzillon	UG Sanguèze	Α	août	17	16			-43 %	-6 %	-26 %	-16 %				
			sept.	13	12			-48 %	-7 %	-30 %	-18 %				

Station	UG concernée	Scenario	Mois	DOE (I/s)	DOE transposé à la station bio (l/s)	Truite fario adulte	Truite fario juvénile	Chabot	Goujon	Loche Franche	Vairon	Guilde Mouille	Guilde Rive	Guilde Radier	Guilde Chenal
			juin	123	147			-6 %		-3 %		-1 %	0 %		-7 %
Grande Maine au Pont	UG Grande Maine		juil.	59	70			-26 %		-15 %		-3 %	-2 %		-28 %
Léger	og Grande Maine	Α	août	32	38			-39 %		-24 %		-5 %	-4 %		-42 %
			sept.	20	24			-48 %		-30 %		-7 %	-5 %		-50 %
			juin	89	89			-22 %		-12 %		-1 %	0 %		-24 %
Datita Maina à Français	LIC Detite Mains		juil.	42	42			-38 %		-22 %		-3 %	-1 %		-41 %
Petite Maine à Fromage	UG Petite Maine	Α	août	25	25			-48 %		-29 %		-4 %	-2 %		-51 %
			sept.	15	15			-56 %		-35 %		-5 %	-3 %		-58 %
			juin	330	313			0 %		0 %		0 %	0 %		0 %
			juil.	212	201			-12 %		-6 %		0 %	1 %		-13 %
Maine à Aigrefeuille	UG Maine	Α	août	127	120			-24 %		-12 %		1 %	2 %		-26 %
			sept.	81	77			-34 %		-18 %		1 %	2 %		-36 %
			juin	325	345	0 %		0 %				0 %	0 %	0 %	1 %
Sèvre Nantaise à	110.0		juil.	325	345	0 %		0 %				0 %	0 %	0 %	1 %
Montravers	UG Sèvre amont	В	août	200	213	-8 %		-13 %				-2 %	-1 %	-5 %	-15 %
			sept.	200	213	-8 %		-13 %				-2 %	-1 %	-5 %	-15 %
			juin	124	91			-18 %	-7 %	-12 %	-9 %				
Ouin à la Basse	LIC Owin		juil.	73	53			-33 %	-13 %	-23 %	-17 %				
Gelousière	UG Ouin	В	août	45	33			-45 %	-19 %	-32 %	-25 %				
			sept.	33	24			-51 %	-23 %	-38 %	-29 %				
			juin	390	390	0 %		0 %		0 %		0 %	0 %		0 %
Sèvre Nantaise à			juil.	390	390	0 %		0 %		0 %		0 %	0 %		0 %
Tiffauges	UG Sèvre moyenne 1	В	août	270	270	-5 %		-10 %		-5 %		0 %	0 %		-11 %
			sept.	270	270	-5 %		-10 %		-5 %		0 %	0 %		-11 %
			juin	485	504							0 %	0 %		-8 %
Sèvre Nantaise à			juil.	485	504							0 %	0 %		-8 %
Angreviers	UG Sèvre moyenne 2	В	août	340	354							-1 %	-1 %		-18 %
			sept.	340	354							-1 %	-1 %		-18 %

Station	UG concernée	Scenario	Mois	DOE (I/s)	DOE transposé à la station bio (l/s)	Truite fario adulte	Truite fario juvénile	Chabot	Goujon	Loche Franche	Vairon	Guilde Mouille	Guilde Rive	Guilde Radier	
			juin	80	106			-19 %		-10 %		-3 %	-1 %		-21 %
Moine à Cholet	UG Moine 1	В	juil.	80	106			-19 %		-10 %		-3 %	-1 %		-21 %
Wolfie a Cholet	OG MOME I		août	69	91			-23 %		-13 %		-3 %	-1 %		-26 %
			sept.	58	76			-27 %		-15 %		-4 %	-2 %		-30 %
			juin	160	152			-15 %		-7 %		1 %	2 %		-17 %
Moine à Saint-Crespin	UG Moine 2	В	juil.	160	152			-15 %		-7 %		1 %	2 %		-17 %
wome a Samt-Crespin	OG MOINE 2		août	160	152			-15 %		-7 %		1 %	2 %		-17 %
			sept.	156	149			-15 %		-7 %		1 %	2 %		-17 %
			juin	50	47			-20 %	-2 %	-11 %	-6 %				
Canquàza à Mauzillan	UG Sanguèze	В	juil.	27	25			-34 %	-4 %	-20 %	-12 %				
anguèze à Mouzillon	OG Sangueze	P	août	17	16			-43 %	-6 %	-26 %	-16 %				
			sept.	13	12			-48 %	-7 %	-30 %	-18 %				
			juin	80	95			-18 %		-10 %		-2 %	-1 %		-20 %
Grande Maine au Pont	UG Grande Maine	В	juil.	59	70			-26 %		-15 %		-3 %	-2 %		-28 %
Léger	og Grande Maine		août	32	38			-39 %		-24 %		-5 %	-4 %		-42 %
			sept.	20	24			-48 %		-30 %		-7 %	-5 %		-50 %
			juin	89	89			-22 %		-12 %		-1 %	0 %		-24 %
Datita Maina à Evansaga	LIC Detite Mains		juil.	42	42			-38 %		-22 %		-3 %	-1 %		-41 %
Petite Maine à Fromage	UG Petite Maine	В	août	25	25			-48 %		-29 %		-4 %	-2 %		-51 %
			sept.	15	15			-56 %		-35 %		-5 %	-3 %		-58 %
			juin	190	180			-15 %		-7 %		0 %	1 %		-16 %
Maina à Aigrafacille	LIC Mains		juil.	190	180			-15 %		-7 %		0 %	1 %		-16 %
Maine à Aigrefeuille	UG Maine	В	août	127	120			-24 %		-12 %		1 %	2 %		-26 %
			sept.	81	77			-34 %		-18 %		1 %	2 %		-36 %

12 Acronymes utilisés

AEP: Alimentation en Eau Potable

AELB : Agence de l'Eau Loire-Bretagne

COTECH: Comité TECHnique

DCR: Débit de CRise

DOE: Débits Objectif d'étiage

DSA: Débit Seuil d'Alerte

DSAR: Débit Seuil d'Alerte Renforcée

MTECT : Ministère de la Transition Ecologique et de la Cohésion des Territoires

QAM5 : Débit moyen annuel quinquennal sec

QMN5 : Débit moyen mensuel quinquennal sec

SPU: Surface Pondérée Utile

UG: Unités de Gestion

VP: Volume Prélevable

VPD: Volume Potentiellement Disponible

VPM: Volume Potentiellement Mobilisable

